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Cardiovascular aging and longevity are interrelated through many pathophysiological mechanisms. Many factors that

promote atherosclerotic cardiovascular disease are also implicated in the aging process and vice versa. Indeed, cardio-

metabolic disorders such as hyperglycemia, insulin resistance, dyslipidemia, and arterial hypertension share common

pathophysiological mechanisms with aging and longevity. Moreover, genetic modulators of longevity have a significant

impact on cardiovascular aging. The current knowledge of genetic, molecular, and biochemical pathways of aging may

serve as a substrate to introduce interventions that might delay cardiovascular aging, thus approaching the goal of

longevity. In the present review, the authors describe pathophysiological links between cardiovascular aging and

longevity and translate these mechanisms into clinical data by reporting genetic, dietary, and environmental

characteristics from long-living populations. (J Am Coll Cardiol 2021;77:189–204) © 2021 by the American College of

Cardiology Foundation.
S cientific research on mechanisms of aging and
means of achieving longevity has provided a
considerable body of knowledge during the

past decades, which is constantly growing. Five pla-
ces in the world, including Ikaria island in Greece,
often termed as “Blue Zones,” have been identified
as the areas with the highest percentage of centenar-
ians (Figure 1) (1). High longevity rates of Ikaria resi-
dents stimulated the conduction of a thorough
epidemiological study (the IKARIA study) aiming to
examine population’s individual characteristics and
habits that could be related to exceptional longevity.
In the context of the IKARIA study, pathophysiolog-
ical mechanisms of cardiovascular aging and
longevity, their interaction, and their translation
into lifestyle behaviors are discussed in the present
review.
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PATHOPHYSIOLOGICAL LINKS BETWEEN

CARDIOVASCULAR AGING AND LONGEVITY

The most important known pathophysiological links
between cardiovascular aging and longevity are pre-
sented in Table 1.

OXIDATIVE STRESS. Increased oxidative stress,
expressed as alterations in the balance between
reactive oxygen species (ROS) production and anti-
oxidant defenses, is considered an important mech-
anism involved in the aging process and has been
linked to the pathogenesis of many age-related dis-
eases, including cardiovascular disease (CVD). Ac-
cording to the “free radical theory of aging,” aging is
the result of accumulative oxidative damage of
cellular constituents (2). Increased oxidative stress
can cause mitochondrial DNA mutations and damage
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HIGHLIGHTS

� Cardiovascular aging and longevity share
common pathophysiological mechanisms.

� Delaying cardiovascular aging increases
the likelihood of longevity.

� Mediterranean diet, low-calorie intake,
physical activity, smoking cessation, and
a favorable genetic and environmental
background are features of long-living
populations.

� The areas of the world with high
longevity records may serve as a model
for investigations of genetic and patho-
physiological mechanisms and for the
evolution of the field of rejuvenation
medicine.

ABBR EV I A T I ON S

AND ACRONYMS

AMPK = adenosine

monophosphate-activated

protein kinase

APOE = apolipoprotein E

BP = blood pressure

CHIP = clonal hematopoiesis of

indeterminate potential

CR = calorie restriction

CRP = C-reactive protein

CVD = cardiovascular disease

FMD = flow-mediated dilation

FOXO = forkhead box protein O

HMG-CoAR = 3-hydroxy-3-

methylglutaryl-coenzyme A

reductase

IGF = insulin-like growth factor

LDL-C = low-density

lipoprotein cholesterol

mTOR = mammalian target of

rapamycin

NF-kB = nuclear factor-kB

PWV = pulse wave velocity

ROS = reactive oxygen species

Pietri and Stefanadis J A C C V O L . 7 7 , N O . 2 , 2 0 2 1

Cardiovascular Aging and Longevity J A N U A R Y 1 9 , 2 0 2 1 : 1 8 9 – 2 0 4

190
in other mitochondrial constituents, result-
ing in impairment of electron transport chain
function, increase in mitochondrial perme-
ability, and therefore mitochondrial and
overall cellular dysfunction (3,4). Efficacy of
antioxidant mechanisms and resistance to
oxidative stress are believed to decline with
increasing age (4). All these can lead to
cellular senescence or apoptosis as means of
protection from the harmful impact of
persistent oxidative stress or cellular necro-
sis due to extensive oxidative damage, thus,
promoting the aging process (3–5).

The important role of oxidative stress in
aging and determination of life span duration
is supported by a considerable body of evi-
dence. Increased activity of the antioxidants
superoxide dismutase and catalase and
increased resistance to oxidative stress were
associated with prolonged life span in Cae-
norhabditis elegans, Drosophila, and mice
(6,7). Moreover, experimental studies
focusing on the effects of oxidative stress on
the cardiac tissue have shown that inhibition
of type 5 isoform of adenyl-cyclase (AC-5),
which plays a key role in sympathetic trans-
mission and beta-adrenergic receptor signaling in the
E 1 The Blue Zones

aces on earth have been identified as places with the highest longe

hese areas, especially from the Greek eastern Aegean island of Ik

ity.
heart, increases resistance to oxidative stress in mice
through upregulation of superoxide dismutase,
resulting in protection from cardiomyopathy induced
by various stressors and in extension of life span by
30% (8).

In humans, several studies have reported reduced
levels of markers of oxidative stress and/or increased
vity rates; they are so-called “Blue Zones.” Epidemiological findings

aria, highlight the relationship between cardiovascular aging and
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TABLE 1 Potential Pathophysiological Links Between CV

Aging and Longevity

Oxidative stress

Inflammatory activation

Metabolic disorders

Hyperglycemia

Hyperinsulinemia

Insulin resistance

Dyslipidemia

Vascular disorders

Endothelial dysfunction

Arterial hypertension

Arterial stiffness

Genetic-epigenetic mechanisms

Telomere length

DNA methylation

Clonal hematopoiesis of intermediate potential (CHIP)

CV ¼ cardiovascular.
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levels of antioxidant molecules in long-lived in-
dividuals compared with elderly of younger age
(9,10). Investigators found higher levels of antioxi-
dant vitamins C and E and lower levels of reaction
products of malondialdehyde with thiobarbituric acid
and lipid hydroperoxides in healthy centenarians
compared with elderly participants of younger age
(9); a similar pattern was evident in other studies
with Italian centenarians (10). Okinawan centenar-
ians also presented lower levels of lipid peroxidation
compared with younger individuals of various age
groups (11). Others demonstrated a generally main-
tained antioxidative status in healthy nonagenarians
compared with young controls (12), whereas Spanish
researchers showed that levels of oxidative stress
were lower in elderly individuals >97 years old than
in controls age 70 to 80 years (13). Genetic analysis in
a large sample of nonagenarians in Denmark
demonstrated a significant association of
antioxidant-related genetic polymorphisms with
increased survival beyond 90 years (14). These find-
ings were partially replicated in an Italian elderly
cohort (15).

However, in a number of experimental studies,
oxidative stress was not inversely related with dura-
tion of life span, and genetic and pharmaceutic in-
terventions in animals aiming to prolong life span
through attenuation of oxidative stress did not pro-
duce the expected results (16). Moreover, there is
strong evidence of the existence of the “mitohorm-
esis” phenomenon; the promotion of stress resistance
and longevity after exposure to non-lethal ROS con-
centrations (17). Recently, investigators demon-
strated that a transient increase in ROS, which occurs
naturally in the early development of C. elegans,
increases stress resistance, improves redox
homeostasis, and prolongs life span, an effect that is
linked with the ROS-mediated decrease in develop-
mental histone H3K4me 3 levels (18).

Thus, future research should target pinpointing the
subtle in vivo balance between preoxidant and anti-
oxidant processes, either naturally or pharmaceuti-
cally, which might be the key for an optimal oxidative
status that will both delay cardiovascular aging and
promote longevity.

INFLAMMATORY ACTIVATION. The role of low-grade
inflammation as a pathophysiological mechanism and
risk factor for many aging-related diseases, including
CVD, has been highlighted by several studies (19).
Importantly, the term “inflammaging” has been
introduced in the published data as a distinct patho-
physiological entity aiming to describe the chronic
progressively increasing proinflammatory status that
characterizes the aging process (20) (Figure 2). More-
over, it has been proposed that a successful response
to low-grade inflammation (“anti-inflammaging”)
could underlay longevity (Figure 2). Similar to
oxidative stress, maintaining a proper equilibrium
between pre-inflammatory and anti-inflammatory
agents, thus providing adequate protection from in-
fections and concurrently avoiding high levels of
chronic inflammation, may be of great importance.

Proinflammatory molecules that have mostly been
identified to participate in the inflammatory state are
interleukins (ILs) such as IL-1, IL-6, IL-8, IL-13, IL-18,
C-reactive protein (CRP), and tumor necrosis factor-a
and its receptors (19) (Figure 2). Numerous studies
have reported associations between these cytokines
and several age-related diseases. Accordingly, asso-
ciations with related genes, mainly modulating CRP
and IL-6 expression, also have been observed (21).
Importantly, higher levels of inflammatory markers
have been negatively related with longevity in elderly
populations (22). Conversely, anti-inflammatory
molecules may be protective; for example, a genetic
variant promoting synthesis of the anti-inflammatory
IL-10 has been associated with longevity in Italian
centenarians (23), whereas Van Den Biggelaar et al.
(24) have shown that lower IL-10 levels and a poly-
morphism related with lower IL-10 production were
predictive of higher CV mortality.

Among other molecular mechanisms that are
implicated in inflammaging is the activation of the
nuclear factor NF-kB. Activation of the NF-kB results
in upregulation of proinflammatory genes and
increased expression of several cytokines (25). Inter-
estingly, in a study that used motif mapping of genes,
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FIGURE 2 Inflammation, CV Aging, and Longevity
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The term “inflammaging” refers to the inflammatory activation that occurs with aging and is associated with aging-related diseases, including

atherosclerotic cardiovascular disease, and short life span. On the contrary, “anti-inflammaging” is a state induced by “anti-inflammatory”

cytokines, such as interleukin-10. Agents with anti-inflammatory properties may be proposed as inducers of “anti-inflammaging.” “Anti-

inflammaging” contributes to better cardiovascular health and longevity. CAD ¼ coronary artery disease; CRP ¼ C-reactive protein;

CV ¼ cardiovascular; IL ¼ interleukin; RAAS ¼ renin angiotensin aldosterone system; TNF ¼ tumor necrosis factor.
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the NF-kB motif was most strongly related to aging
(26), whereas NF-kB inhibition was found to prolong
survival in experimental studies (27). With aging, an
increasing number of human cells undergo senes-
cence, a condition mainly referring to loss of prolifer-
ative capacity. Cell senescence is mostly a defense
mechanism against oncogenesis and cell injury, which
is more likely to occur with advancing age (28). Se-
nescent cells present a senescence-associated secre-
tory phenotype, which causes activation of NF-kB and
secretion of proinflammatory cytokines and matrix
metalloproteinases (MMPs) that can either exert
paracrine inflammatory actions or escape in the cir-
culation and maintain low-grade inflammation (28).

An important source of inflammation in aged sub-
jects is fat, especially visceral fat. An increasing total
lipid amount and a fat redistribution, from the sub-
cutaneous to the visceral fat, are observed with aging.
Visceral fat is infiltrated by inflammatory cells and
secretes cytokines and proinflammatory hormones,
such as leptin. Gut microbiota has emerged as another
possible contributor to inflammaging. Presence of
“normal” gut microbiota is considered a protective
mechanism that prevents expansion of potentially
harmful microorganisms (19); however, with
increasing age, alterations in the composition of gut
microbiota have been demonstrated along with
increased intestinal mucosal permeability, which
could allow entrance of bacteria and/or cytokines in
the circulation (19).

Specifically for CVD, inflammation is now recog-
nized as a pivotal feature that promotes atheroscle-
rosis. Pharmaceutical treatment with renin-
angiotensin-aldosterone system (RAAS) inhibitors,
statins, and acetylsalicylic acid decreases cardiovas-
cular mortality, an effect that may be, partly, medi-
ated by the anti-inflammatory properties of these
agents. Interestingly, RAAS inhibitors and statins
have shown to increase life span in animal models,
thus exerting antiaging effects (29,30). Recently,
canakinumab, a monoclonal antibody targeting IL-1b,
therefore indirectly inhibiting the IL-6 pathway,
reduced major CV events (albeit at the cost of an in-
crease in fatal infections), providing robust evidence
that targeted inflammatory therapy can be beneficial
in CVD (31). Future studies need to establish the role
of agents with anti-inflammatory effects in the delay
of aging and promotion of longevity.

METABOLIC DISORDERS. Hyperglycemia and insulin
disturbances. Hyperglycemia promotes aging
through many biochemical pathways. In in-
vertebrates, high glucose conditions accelerate aging
via downregulation of proteins known to promote
longevity, such as the adenosine monophosphate-
activated protein kinase (AMPK) and the forkhead
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FIGURE 3 Glucose Metabolism and Longevity
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Abnormal glucose metabolism, defined as hyperglycemia, hyperinsulinemia, and insulin resistance, contributes to accelerated cardiovascular aging but also

to short life span through several pathophysiological mechanisms, such as inhibition of antiaging proteins. Moreover, disrupted regulation of molecules

related to longevity (such as mammalian target of rapamycin and sirtuins) have been related to abnormal glucose metabolism, thus demonstrating a

bidirectional relationship between longevity and abnormal glucose metabolism. On the contrary, normal glucose metabolism with insulin sensitivity and

low insulin levels is associated with decelerated cardiovascular aging and longevity. AMPK ¼ adenosine monophosphate-activated protein kinase; CV ¼
cardiovascular; FOXO ¼ forkhead box protein O; IGF ¼ insulin-like growth factor; mTOR ¼ mammalian target of rapamycin
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box protein O (FOXO) transcription factor DAF-16
(28). Increased activity of AMPK has been found to
extend life span in C. elegans, through favorable
modulation of mitochondrial function and lipid
metabolism (32). The FOXO DAF-1 belongs to the
family of FOXO transcription factors, which control
several cellular important functions, including
metabolism, oxidative stress resistance, and
apoptosis, and are believed to be implicated in aging
and longevity (33). Activity of FOXO DAF-16 is
inhibited by the insulin/insulin-like growth factor 1
(IGF-1) pathway, which is upregulated after
exposure to high glucose (28).

As for mammals, many studies have shown that
exposure to hyperglycemia induces senescence of
several types of cells, such as endothelial progenitor
cells, vascular smooth muscle cells, and renal tubular
cells (34). Augmented oxidative stress and increased
production and accumulation of advanced glycosyl-
ation end products are considered primary mecha-
nisms linking hyperglycemia with aging and age-
related diseases, such as atherosclerotic CVD (32).
Indeed, Chen et al. (35) showed that glycated collagen
accelerated senescence in cultured human endothe-
lial cells, whereas others reported that advanced
glycosylation end products induced calcification in
vascular smooth muscle cells (36) and exerted pro-
aging effect on renal cells (37).

Reduced activity of sirtuins could also play a
crucial role in hyperglycemia-induced aging. Sirtuins
(sirtuin-1 to sirtuin-7) are NAD-dependent enzymes
that control important cellular functions in several
sites inside the cell, enhancing the metabolic ho-
meostasis preservation and cellular damage repair.
Indeed, data have shown that polymorphisms in
sirtuin-3 and siruin-1 genes are associated with hu-
man longevity (38,39) (Figure 3). Cultures of human
endothelial cells exposed to high glucose concentra-
tions presented signs of early senescence along with
significant reduction in the expression of sirtuins
(40). Increased glucose availability (e.g., due to high
intake) can result in enhanced glycolytic activity,
during which NAD is consumed for the production of
NADH. Because sirtuins are NAD-dependent en-
zymes, diminished NAD levels eventually result in
reduced activity of sirtuins, thus exerting a pro-aging
effect (41).

Insulin, insulin resistance, and the insulin/IGF-1
pathway are also important factors in the aging pro-
cess. Indeed, both animal and human studies indicate
that normal glucose metabolism, lower insulin levels,
and higher insulin sensitivity could constitute a
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marker of healthy aging and longevity (42) (Figure 3).
Adiponectin, a protein secreted by the adipose tissue
that enhances insulin sensitivity and exerts anti-
inflammatory properties, has also been found upre-
gulated in individuals >95 years old (43). Conversely,
increased insulin/IGF-1 signaling has been associated
with aging, through inhibition of antiaging FOXO
proteins, attenuation of resistance to oxidative stress,
and exertion of possible antiapoptotic actions that
may be related to development of cancer (44).
Importantly, insulin and IGF-1 stimulate activation of
the mammalian target of rapamycin (mTOR), a pro-
tein kinase that is a member of the kinase family
PI3KK (phosphatidylinositol 3 kinase-related kinase),
and is found in almost every eukaryotic organism
(45). Furthermore, mTOR regulates numerous cellular
functions, including apoptosis, oxidative stress
response, and senescence, and is considered a major
contributor to aging, whereas reduced mTOR activity
has been linked to life span extension (45) (Figure 3).
However, it should be noted that mTOR has 2 distinct
complexes, mTOR complex 1 (mTORC1) and mTOR
complex 2 (mTORC2) with different functions and
sensitivity to rapamycin. Indeed, although the inhi-
bition of mTORC1 may promote longevity, the inhi-
bition of mTORC2 may have negative results, partly
through increasing insulin resistance (46). An mTOR
inhibitor that induces an incomplete inhibition of
mTORC1 but spares mTORC2, has been proposed as
the most appealing candidate for mTOR inhibition
and, thus, life span extension (47).

Interestingly, in the era of modern antidiabetic
therapies, an old but effective choice, metformin,
which acts as an insulin-sensitizing agent that acti-
vates AMPK and also has anti-inflammatory and
antioxidant properties, has been proposed by re-
searchers as a drug with potential antiaging proper-
ties (48) (Figure 3).

Dysl ip idemia . Several age-related mechanisms are
believed to mediate alterations in lipoprotein syn-
thesis and activity resulting in dyslipidemia. Adipose
tissue is a dynamic endocrine gland with important
functions, such as energy deposit, temperature
regulation, nutritional handling, secretion of vasoac-
tive substances, immune system modulation, and
tissue remodeling (49). With increasing age, total
amounts of body fat and especially visceral fat, in-
crease, therefore predisposing to reduced insulin
sensitivity, low-grade inflammation, and production
of atherogenic lipoproteins (50). Interestingly, in
experimental studies, increased expression of the
potentially antiaging enzyme sirtuin-1 was associated
with lower low-density lipoprotein cholesterol
(LDL-C) and insulin levels and reduced obesity-
induced insulin resistance (51). Another animal
study reported that a pharmacological activator of
sirtuin-1 reduced LDL-C and total cholesterol levels
and ameliorated atherosclerosis in mice fed a high-
cholesterol diet; these findings were attributed to
reduced expression of proprotein convertase subtili-
sin/kexin type (9PCSK9), which is known to promote
degradation of LDL-receptor and, thus, inhibit LDL-C
uptake (52).

The aging-observed hypercholesterolemia also
may be partially attributed to reduced degradation
and increased activation of the enzyme that is pivotal
for cholesterol biosynthesis, the 3-hydroxy-3-
methylglutaryl-coenzyme A reductase (HMG-CoAR);
reduced insulin sensitivity also may be involved in
this biochemical pathway (53). Notably, in aged rats,
the process of reduced degradation of HMG-CoAR was
regressed after calorie restriction (54).

Finally, the genetic modulation of lipoproteins is
implicated in the inverse relationship between
atherosclerosis and longevity. Polymorphisms of the
gene encoding apolipoprotein E (APOE), a major
regulator of lipid metabolism, have been related to
longevity. APOE has several isoforms, among which
APOE4 and APOE3 are the most common, although
ApoE2 and even rarer ones also exist. The difference
in the interaction of their amino acids affect the
structures and their impact on disease. Indeed, the
APOE4 isoform is linked to increased LDL-C levels
(55) and the corresponding allele is related to reduced
odds of achieving longevity and increased odds of
developing CVD and Alzheimer disease compared
with the allele promoting synthesis of APOE3 (56).
Other studies reported that genetic predisposition to
high LDL-C values is associated with higher mortality
risk, even in ages >90 years, whereas a favorable LDL-
C genetic profile is related to familial longevity (57).
Finally, a genetic study in long-lived Ashkenazi
Jewish individuals (mean age 98 years) provided ev-
idence that size of lipoprotein particles could play a
role in the longevity observed in this population.
Elderly participants and their offspring had signifi-
cantly larger LDL-C and high-density lipoprotein
cholesterol particle sizes compared with the general
population, whereas the increased particle size was
associated with reduced prevalence of arterial hy-
pertension, metabolic syndrome, and CVD (58).
ARTERIAL HYPERTENSION-ARTERIAL STIFFNESS.

The main primary vascular disorders considered to be
implicated in the aging process are hypertension and
arterial stiffness, which are linked through a cause-
and-effect relationship. Arterial hypertension



FIGURE 4 Aortic Stiffness and Longevity
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promotes arterial stiffness and vice versa. Arterial
hypertension is an established risk factor for CVD and
clearly an aging-related disease (59), whereas
increasing evidence suggests that it is associated with
subclinical inflammation (60), thus reinforcing the
notion of “inflammaging.”

Notably, genetic polymorphisms related to low
blood pressure (BP) values, have been linked to
longevity. A meta-analysis of genetic studies in
7,729 elderly subjects ($85 years) and 16,121 in-
dividuals of younger age (<65 years), demonstrated
an important association between a novel locus
(rs2149954 in the 5q33.3 chromosome) and survival
beyond 90 years (61). Interestingly, carriers of the
minor allele of rs2149954 (T) on chromosome 5q33.3
had lower cardiovascular mortality risk, driven
mainly by the protection from stroke (61). More-
over, this allele had been previously linked with
low BP in middle age (61). Other researchers showed
that the presence of rs198389, a functional variant
in the promoter region of the B-type natriuretic
peptide (BNP) gene (NPPB) was related to high
levels of N-terminal pro-BNP (NT-proBNP) during
adulthood, decreased arterial BP, reduced CV mor-
tality, and life extension (62).
Arterial hypertension contributes to arterial aging.
Arterial stiffness is the core of early vascular aging
syndrome, a novel concept that aims to elucidate
mechanisms of early and/or accelerated vascular ag-
ing and identify individuals with the respective
phenotype (63). Measurement of pulse wave velocity
(PWV), especially carotid-to-femoral pulse wave ve-
locity (cf-PWV), is the gold-standard surrogate
marker of arterial stiffness. Moreover, low-grade
inflammation is implicated into the pathophysiology
of aortic stiffness (64,65), thereby further fueling the
“inflammaging” concept, whereas oxidative stress
may also contribute to loss of arterial elasticity
through tissue injury and NO depletion. Noteworthy,
arterial stiffness is an independent predictor of CV
events and CV and all-cause mortality (66). The ge-
netic predisposition to elastic arteries and longevity
cannot be excluded given that parental longevity has
been associated with lower PWV values in adult
offspring compared with those whose father did not
live longer than 80 years (67). Interestingly, in the
IKARIA study, PWV was significantly lower in in-
habitants aged >50 years as compared with in-
dividuals of the same age groups in the general
population (68) (Figure 4), a finding that implies a
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deceleration in vascular aging, which may have
important clinical implications for CV health and
longevity. A positive effect of genetic, environmental
and lifestyle factors on the favorable vascular func-
tion of this population is possible, but warrants
further investigation.

GENETIC-EPIGENETIC MECHANISMS

TELOMERE LENGTH. Telomeres are DNA-protein
complexes that cap both ends of each chromosome
and play a pivotal role in maintaining chromosomal
stability and integrity. During life, most cells are
subject to several divisions, and DNA replication is an
essential step in each division. DNA polymerases, a
family of enzymes responsible for DNA replication,
are unable to induce replication of the whole chro-
mosome (i.e., replication until chromosome ends), a
condition known as the “end replication problem”

(69). Telomeres protect chromosome ends from
degradation during replication. However, length of
telomeres is reduced after each cell division as a
consequence of the end replication problem; more-
over, telomere shortening is believed to be acceler-
ated by conditions like increased oxidative stress and
inflammation (3) (Figure 5). Telomere shortening is
partially counterbalanced by telomerase, a ribonu-
cleoprotein complex that binds to the telomere and
promotes synthesis of telomeric sequences. After a
certain number of cell divisions, telomeres may have
been shortened to a critical extent and have lost their
protective properties and these may induce cell
senescence, loss of ability to proliferate, and/or
apoptosis, thus, constituting a major mechanism
involved in the aging process (69). Under this prism,
telomeres have been characterized as “biological
clock,” a term that emphasizes their important role in
modulation of cell life span. The anti-oncogenic p53
pathway is largely involved in termination of division
and in apoptosis of cells with critically short telo-
meres. In case of p53 mutation or loss of function,
these cells may escape arrest of division and continue
to divide until reaching the stage of crisis, that is,
extensive fusion of chromosome ends and genome
instability and subsequent massive cellular death
(70) (Figure 5).

Short telomere length has been related to several
CV risk factors and age-related diseases (Figure 5). In
the MacArthur Health Aging Study, absolute baseline
telomere length was inversely associated with CV
mortality in elderly women, whereas telomere
shortening during follow-up was related to increased
CV mortality in elderly men (71). Moreover, telomere-
related polymorphisms were linked with CV mortality
in women in the Cardiovascular Health Study (72).
Importantly, a recent meta-analysis conducted in the
general population demonstrated significant associa-
tions between short telomere length and all-cause
mortality (73).

Increased telomerase activity is probably an
important factor contributing to higher length of
telomeres and achievement of longevity (Figure 5).
Telomerase has 2 essential components, the reverse
transcriptase component (hTERT) and the RNA
component (hTERC). Data from an elderly Swedish
cohort suggest that a genetic polymorphism impli-
cated in the synthesis of hTERT, the catalytic sub-
unit of telomerase associated with increased
telomerase activity, was related to older age at death
in women (74). In the mammalian heart, the
expression of telomerase is small, but functionally
significant. In mice, a population of cells with fea-
tures of cardiomyocytic, endothelial, and mesen-
chymal phenotype was identified as responsible for
telomerase activity. This cell population with telo-
merase activity presented a 6.45-fold increase,
compared with control adult hearts, after myocardial
cryoinjury, suggesting that telomerase may play a
regulatory role on the myocardial repair and reju-
venation (75). In other experimental studies, acti-
vation of telomerase after myocardial infarction
reduced the risk of heart failure and increased sur-
vival, whereas loss of telomerase resulted in occur-
rence of features observed in heart failure, that is,
ventricular dilatation, wall thinness, and increased
apoptosis (76).

In addition, accumulating evidence suggests that
telomerase might exert an antiaging effect through
nontelomeric activities. Therefore, telomerase has
been found to confer protection from oxidative
stress, improve mitochondrial function, modulate
DNA repair, inhibit apoptotic process, and promote
cell survival independent of telomere elongation (77)
(Figure 5). The nontelomeric effects of telomerase,
attributed to hTERT expression, remain, however,
disputed (78). Therefore, the exact role of telomerase
on cardiovascular aging and longevity needs further
investigation.

To conclude, telomere length is important for both
cardiovascular aging and longevity, whereas the
predominant effect on cardiovascular aging is attrib-
uted to the modulation of atherosclerotic CV disease
(79).
DNA METHYLATION CLOCKS AND CLONAL

HEMATOPOIESIS OF INDETERMINATE POTENTIAL.

In an effort to discover more about the epigenetic
substrate of aging and longevity and to better define
biological age, the term of “epigenetic” or “DNA
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methylation clocks” has been recently introduced.
DNA methylation is a common phenomenon in or-
ganisms, and describes the methylation of DNA’s ba-
ses, predominantly at the site of cytosine (5-
methylcystosine, 5mC). In mammalian cells, DNA
methylation is found almost exclusively in the CpG
dinucleotide sequence context and plays an impor-
tant role in gene expression regulation, development,
and disease, whereas age-related changes in DNA
methylation are implicated in healthy aging and
longevity (80). Loss of DNA methylation at certain
loci has led to epigenetic clocks of aging. Among
research groups on “epigenetic clocks,” Hannum
et al. (81) constructed a predictive model of aging rate
using measurements at more than 450,000 CpG
markers from the whole blood of humans, whereas
Horvath (82) developed a multitissue predictor of age
that allows the estimation of DNA methylation age of
most tissues and cell types. Investigators showed that
the difference between Horvath’s estimated biolog-
ical age and chronological age was associated with
incident CVD in 832 older individuals after 10 years of
follow-up (83). Whether these “epigenetic clocks”
may accurately estimate vascular age and, thus, serve
as a biomarker of CVD is a challenge that remains to
be addressed (84).

Novel research on the genetic modulation of aging
has focused on the role of clonal hematopoiesis of
indeterminate potential (CHIP). The CHIP phenome-
non refers to a mutation process of hematopoietic
stem cells. Hematopoietic stem cells divide continu-
ously during our lifetime and as a consequence of this
mitotic activity, mutations can occur. Most of these
mutations lead to cell death, but occasionally a mu-
tation promotes cell survival and, thus, a clonal
expansion of the mutated cells is created. The
“immortalized” clone of these blood cells represents
the phenomenon of CHIP. The most common muta-
tions related to CHIP are in 4 genes: DNMT3A, TET2,
ASXL1, and JAK2, all of which are associated with CVD
(85). Moreover, these genes are implicated in the
control of inflammation through regulation of pro-
teins of the innate immune system responsible for
inflammatory stimulation, known as inflammasome.
Study in mice showed that these inflammasome
genes may accelerate atherosclerosis through in-
flammatory activation (86). Interestingly, IL-1b (the
monoclonal antibody against IL-1b was used in the



FIGURE 6 The Book of Longevity
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CANTOS Study [Cardiovascular Risk Reduction Study
(Reduction in Recurrent Major CV Disease Events)]),
is associated with CHIP, whereas the expression of
the mutated inflammasome genes related to IL-1b
production has been associated with increased
oxidative stress, arterial hypertension, arterial stiff-
ness, and all-cause mortality in older individuals (87).
Research on the challenging role of CHIP on age-
related diseases is only recently developed and
future studies need to establish the etiological rela-
tionship, if any, between CHIP and longevity and
thus, to move one step forward into personalized
medicine.

LIFESTYLE BEHAVIORS THAT MAY

PROMOTE LONGEVITY

HEALTHY DIET. A huge amount of scientific research
has dealt with the impact of nutrition on longevity.
The so-called Mediterranean diet is probably the most
studied dietary pattern, and several studies have
highlighted its beneficial effect on CV and holistic
health. The epidemiological study that established for
the first time an inverse relationship between Medi-
terranean diet and CV mortality was the Seven
Countries Study in the late 1950s-early 1960s (88,89).
A subsequent study in a large sample of the Greek
population demonstrated after 44 months of follow-
up a significant inverse relationship between Medi-
terranean diet and mortality (90).

In the IKARIA study, in a sample of elderly subjects
aged older than 80 years, a significant adaptation to
the Mediterranean diet was observed (91). The CV
protection conferred by the Mediterranean diet is
attributed to favorable modulation of classic CV risk
factors but also to amelioration of other factors
related with CVD and aging, such as inflammation,
oxidative stress, and endothelial dysfunction (92).
These actions are exerted either as a whole, implying
a beneficial food synergy (e.g., in the IKARIA study
level of adherence to the Mediterranean diet was
inversely related to uric acid levels, which might
serve as marker of oxidative stress [93]) or due to
specific properties of separate components.

There is evidence that coffee intake could be
another dietary factor contributing to longevity.
Elderly participants of the IKARIA study were, at the
largest proportion, moderate coffee consumers (200
to 450 ml/day) (91). Assessment of endothelial func-
tion with flow-mediated dilation (FMD) in inhabitants
aged >65 years demonstrated a linear relationship
between increasing coffee consumption and higher
FMD values (94). Coffee contains polyphenols and
micronutrients (e.g., vitamins), which act as antioxi-
dants and it also has anti-inflammatory properties.
Moreover, caffeine, the polyphenol chlorogenic acid
contained in coffee, and its metabolites caffeic and
ferulic acid have been shown to improve NO meta-
bolism and vascular function, whereas another study
has reported that coffee can inhibit platelet aggrega-
tion (95). Most importantly, coffee consumption has
been related to improved clinical outcomes. In the
EPIC (European Prospective Investigation into Cancer
and Nutrition) study, increased coffee consumption
was associated with lower total mortality in both
genders and lower CV and stroke-related mortality in
women after a 16-year follow-up (96). Moreover, a
recent large meta-analysis concluded that moderate
coffee intake (2 to 4 cups per day) was associated with
significantly reduced all-cause mortality (by 15%), CV
mortality (by 17%), and cancer mortality (by 4%) (97).
In the IKARIA study, coffee drinking, along with fruit
intake and olive oil consumption, was associated with
decreased incidence of CVD (98).
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Another dietary approach extensively studied and
potentially linked with longevity is calorie restriction
(CR). A large amount of evidence in nonhuman
studies indicates that reduction in energy intake by
20% to 40% promotes life span extension (99).
Moreover, the longevity of Okinawans in Japan has
been largely attributed to CR; 4 decades ago, it had
been estimated that Okinawans had 17% lower calorie
intake compared with the average intake in Japan and
presented remarkably lower mortality from age-
related diseases and higher life span duration (100).
Elderly inhabitants of Ikaria also reported a relatively
low daily energy intake (91). In several studies, from
yeasts to mammals, CR has been linked with
increased activity of AMPK and sirtuins, inhibition of
mTOR, activation of FOXO proteins, reduced oxida-
tive stress and inflammation, and improved insulin
sensitivity, all of which potentially promote longevity
(101). However, the effects of CR on human longevity
remain obscure. Recently, the low-protein, low-calo-
rie fasting-mimicking diets gain attention due to their
antiaging properties, safety, and feasibility, although
clinical studies are limited (102).

It is of note that aspirin, a cardiovascular drug with
anti-inflammatory and antithrombotic properties has
been recognized as a calorie-restriction mimetic,
mainly by inducing autophagy (103).

In conclusion, the Mediterranean diet, possibly
accompanied by coffee intake, seems the most
appropriate dietary choice for CV and holistic health.
Low-calorie intake is also a promising dietary path to
longevity.

PHYSICAL ACTIVITY. Physical activity and exercise
are considered essential factors contributing to
healthy aging and prolonged life span. Approximately
90% of men and 70% of women aged >80 years in the
IKARIA study reported moderate or high daily phys-
ical activity (91), a feature that was common among
inhabitants from the blue zone of Sardinia (104).
Moreover, in the IKARIA study, endothelial function
assessed by FMD was significantly improved in
middle-aged subjects who reported regular exercise
compared with those who did not exercise (105). In
the Physicians’ Health Study, regular exercise was
related to higher probability of reaching the age of 90
along with better functional status at late life (106).

Several aging-related mechanisms mediate the
benefits associated with physical activity and exer-
cise. Physical activity promotes CV health through
reduction of the burden of established CV risk factors
(i.e., hypertension, hyperglycemia, dyslipidemia).
These factors probably do not fully account for the
protection conferred by physical activity. Exercise
influences coagulation mechanisms and shifts the
balance toward a less thrombogenic status (107).
Moreover, physical activity attenuates inflammation
and oxidative stress and improves endothelial func-
tion (108,109).

Furthermore, there is evidence that exercise could
exert antiaging properties through an effect on telo-
mere length. A positive relationship between level of
physical activity and telomere length in a study with
2401 twin volunteers was demonstrated (110),
whereas others reported increased presence of longer
telomeres in athletes compared with controls (111),
along with upregulated telomerase activity in one of
them. Notably, increased telomerase activity
observed in mice after short-term exercise was
accompanied with reduced expression of the
apoptotic proteins p16 and p53 (112).

SMOKING CESSATION. Apart from the beneficial ef-
fects of exercise on CV and holistic health, abstaining
from smoking is fundamental for healthy aging and
longevity. Smoking is a strong, modifiable CV risk
factor, even among older adults (113). In the elderly
Ikaria inhabitants, the percentage of active smokers
was low (17% in men, 7% in women), although 82% of
men were former smokers (91). Smoking cessation
reduces CV risk (113), although there is uncertainty
about the time course of CV risk reduction following
smoking cessation. Recently, in a prospective anal-
ysis from the Framingham Heart Study, smoking
cessation, among heavy smokers, was associated with
a significantly lower risk of CV events within 5 years,
relative to current smokers (114). However, ex-
smokers had significantly increased cardiovascular
risk, beyond 5 years after smoking cessation,
compared with never smokers (114). In another study,
smoking cessation after a first CV event was associ-
ated with lower risk of recurrent CV events and all-
cause mortality (115). Among other mechanisms,
beneficial alterations in endothelial function may
partially explain the decreased CV risk associated
with smoking cessation (116).

Therefore, physical activity and smoking cessation
reduce CV risk and may favorably modulate duration
of life span.

ENVIRONMENT, CARDIOVASCULAR AGING,

AND LONGEVITY

Environmental conditions constitute another factor
potentially influencing CV risk and overall life
expectancy.
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Cardiovascular aging and longevity are interrelated through common pathophysiological links, such as oxidative stress, low-grade inflammation, and

insulin resistance. Moreover, lipid disorders, arterial hypertension, and arterial stiffness accelerate cardiovascular aging, whereas their genetically

determined favorable phenotypes have been associated with longevity. Telomere shortening is associated with increased cardiovascular aging through

modulation of atherosclerotic disease, while it is also related with short life span. Delaying cardiovascular aging, through modifiable (e.g., diet, exercise),

nonmodifiable (genes), and mixed modifiable/nonmodifiable factors (environment), may promote longevity, as this is suggested by experimental/

clinical studies and reinforced by epidemiological studies in long-living populations.
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AIR POLLUTION. Air pollution was estimated to ac-
count for 6% of global mortality burden in 2010 (117),
and substantially increases the burden of respiratory
and CV diseases. Inhaled air pollutants increase
oxidative stress and induce inflammation (118).
Moreover, air pollution increases arterial stiffness
and wave reflections (119), and promotes endothelial
dysfunction and atherosclerotic plaque formation,
expansion, and vulnerability, whereas it may also
facilitate platelet activation and aggregation (118). In
the MESA Air Study (Multi-Ethnic Study of Athero-
sclerosis and Air Pollution), long-term exposure to air
pollutants <2.5 mm in aerodynamic diameter (PM2.5)
was related to increased cardiovascular mortality,
partially attributed to endothelial dysfunction given
that short-term exposure to PM2.5 was associated with
decreased FMD and vasoconstriction (120). In addi-
tion, recent data support the notion that air pollution
may accelerate vascular aging through telomere
shortening (121) and modulation of DNA methylation
(122). Importantly, a large U.S. study demonstrated
that reduction in air pollution within a 20-year period
in U.S. urban regions was associated with a significant
increase in life expectancy (123).
CLIMATE. Climate and its measured variables also
may have an impact on health and longevity. There is
evidence between ambient temperature and cardio-
vascular mortality, suggesting that both cold and hot
temperatures may affect cardiovascular mortality,
although the effect of cold is stronger. Recently, data
on the association of weather patterns and total mor-
tality across 9 regions of England showed that people
in regions with cold weather are more susceptible to
CVD (124), a finding compatible with previous results
from 15 European cities where low temperatures dur-
ing the cold season were associated with increased CV
and respiratory mortality, especially in subjects age
>65 years (125). It is of note that in China, the highest
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longevity rates were observed in coastal and southern
regions of China, where the humidity is higher, the
standard deviation of monthly temperature is lower,
and the soil is enriched with selenium (126).

GAMMA (g) RADIATION. Environmental conditions
and geological composition of the Ikaria island may
also contribute to the inhabitants’ longevity,
although such a hypothesis clearly requires further
evidence to be confirmed. Data show that levels of
gamma (g) radiation are higher in the western and
west-north part of the island compared with eastern
Ikaria (127). Interestingly, according to data from the
National Statistical Service of Greece, rate of persons
age >90 years and survival rate across the past 50
years were higher in the western and west-north part
of Ikaria compared with the eastern part. Moreover,
evidence from the IKARIA study suggested that
elderly participants living in places with higher
gamma radiation had lower prevalence of obesity and
higher antioxidant capacity (128).

The role of environmental radiation on cancer risk
and mortality has been investigated in the past. In
1973, the U.S. Atomic Energy Commission had
underlined the difference in cancer mortality be-
tween regions with different levels of radiation, as 6
states with the higher exposure to radiation exhibited
15% lower cancer mortality risk compared with the
average national rate (129). This finding was rein-
forced in 1998, when it was shown that the 3 Rocky
Mountain states had 3.2-fold higher annual radiation
levels compared with the 3 Gulf Coast states, but
cancer mortality was higher in the Gulf Coast states
by 26% (130). The theory that has been proposed is
that there may be a threshold, below which exposure
to radiation could have a beneficial effect on human
health due to stimulation of DNA repair mechanisms
(131,132). Experimental studies have shown that low-
level radiation before exposure to large radiation
doses may protect from DNA damage, as it resulted in
reduced chromosome aberrations and gene muta-
tions, whereas other investigators reported an in-
crease in life span of mice after very low dose
continuous gamma irradiation (133).

Overall, the issue of the potential beneficial effect
of low-dose gamma radiation remains unresolved,
and future studies are warranted to elucidate its exact
role on longevity.

LONGEVITY: LESSONS FROM THE PAST

The most intriguing report regarding longevity comes
from a Bishop almost 400 years before the
identification of the “Blue Zones” (134). Joseph Geor-
girenes, Archbishop of Ikaria-Samos, in a book pub-
lished in 1677 (Figure 6), described, for the first time,
the unique phenomenon of longevity in Ikaria in-
habitants, highlighting the role of the favorable envi-
ronmental conditions, Mediterranean diet, exercise,
and positive feelings: “The most commendable thing of
this island is their air and water, both so healthful that
the people are very long lived, it being an ordinary thing
to see persons in it of an 100 years of age, which is a great
wonder, considering how hardly they live. Eating, there
is not a piece of bread to be found in the island. A little
before dinner, they take as much corn as will serve that
meal. Their diet is poor, yet their bodies are strong and
hardy and the people generally long lived. They live as
they expect not to survive a day, being contented to
satisfy the present necessities of nature. Thus, you have
an account of a small island, the poorest and yet, the
happiest of the whole Aegean Sea.”

Long before the identification of the ‘Blue Zones’
and the contemporary epidemiological studies, Jo-
seph Georgirenes describes factors that favor CV
health and longevity, such as diet, exercise, and
environmental conditions.

CLINICAL IMPLICATIONS:

FUTURE DIRECTIONS

Since 1930, where, for the first time, the beneficial
effect of calorie restriction on life span in mice was
demonstrated, the research on the impact of genetic,
epigenetic, molecular, biochemical, and environ-
mental factors on aging, is growing rapidly. Notably,
most of this research is applied in model organisms
and experimental animals, thus, extrapolation of the
results to human longevity should be considered with
caution. Nonetheless, among the molecular factors,
telomere length emerges as the most appealing
biomarker of cardiovascular aging, with potential
causal relationship with atherosclerosis, although
with a small effect size (135).

Although causality cannot be firmly established, a
pathophysiological hub between cardiovascular aging
and longevity, is clearly demonstrated (Central
Illustration). The most important known pathophysi-
ological mechanisms of atherosclerotic disease, such
as oxidative stress, low-grade inflammation and in-
sulin resistance are also mechanisms of aging. The
beneficial effects of lifestylemeasures, such as healthy
diet and exercise, on longevity, underscore the role of
these mechanisms. Research focus on cardiovascular
genetics and the environmentally driven epigenetic
modulations may aid on personalized cardiovascular
therapeutic interventions that will promote longevity.
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Long-living populations are the optimal substrate for
such research.

CONCLUSIONS

Longevity and cardiovascular aging are closely
interrelated. Mechanisms that promote longevity,
contribute also to slowing of CV aging. Future studies
on the interaction between the underlying genetic
and environmental factors may further explore the
pathophysiological mechanisms and introduce novel
interventions to healthy (CV) aging and longevity.
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