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Abstract: Recent studies report that microbiota in the human intestine play an important role in host
health and that both long- and short-term diets influence gut microbiota. These findings have fueled
interest in the potential of food to promote health by shaping the intestinal microbiota. Despite the
fact that large populations in Asia consume high quantities of carbohydrates, such diets have been
ignored in comparison to the attention received by Western diets containing high quantities of fat and
animal protein. We gathered data that suggest an association between imbalanced high-carbohydrate
intake and gut microbiota and host health. In this review, we identify not only the effect of total
carbohydrates on the intestinal microbiota specifically and the health of their hosts in general, but
also how specific types of carbohydrates influence both factors.
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1. Introduction

Microorganisms such as bacteria, protozoa, viruses, and fungi constitute more than ten times the
number of somatic cells in the human body [1]. Among all human organ systems, the gut contains the
greatest number of microorganisms, and their abundance and genetic diversity have been the focus of
much research. Intestinal bacteria, 60% of which belong to the phyla Bacteroidetes and Firmicutes, play
a variety of roles in human health [2,3]. They ferment and convert indigestible food such as fiber to
available forms, produce bioactive substances, and control a wide range of biological mechanisms
such as those underlying the immune system, glucose and energy homeostasis, and anti-inflammatory
processes [4–7]. Moreover, studies report that human intestinal microbiota are associated with
metabolic syndrome as well as specific diseases, including type 2 diabetes, cardiovascular disease,
inflammatory bowel disease (IBD), Alzheimer’s disease (AD), and cancer [8–11]. For example, butyrate
and other short-chain fatty acids (SCFAs) produced by gut microbiota appear to engage in direct
anti-inflammatory activity; furthermore, Ridaura et al. (2013) revealed that obesity can be initiated
by gut microbiota via microbial transplantation in mice [11,12]. Recent studies also found that gut
microorganisms produce considerable quantities of amyloids known to play critical roles in AD
pathogenesis [13].

Among the various factors known to affect the levels and composition of intestinal microbiota, such
as delivery methods, lifestyle, heredity, and stress, diet is thought to be the primary contributor [14]. A
study in which researchers compared the gut microbiota of European children with that of rural African
children revealed that children in industrialized Europe, mainly consuming animal protein and fat,
have a higher abundance of Bacteroides and lower abundance of Prevotella in their gut microbiota [15].
Inversely, rural African children consuming an agrarian diet showed lower Bacteroides and higher
Prevotella proportions [16]. Furthermore, studies have demonstrated that changes in diet can cause an
acute yet temporary alteration of gut microbiota composition within 24 h [17]. Taken together, these
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observations suggest that human intestinal microbiota can be manipulated by alterations in diet to
treat and prevent metabolic syndrome.

Although the vast majority of people living in Asia consume high carbohydrate diets that
influence their gut microbiota, previous studies in this field have commonly focused on Western diets
characterized by the consumption of high quantities of fat and animal protein. Thus, this review will
explore how diets high in carbohydrates affect metabolic syndrome by shaping the gut microbiota.

2. High Carbohydrate Diets and Metabolic Disorders

Dietary carbohydrates are often the primary energy source for residents of unurbanized regions.
Recent developments in trade have made it easier to consume more concentrated carbohydrates;
consequently, metabolic syndrome rates, which seem to be associated with high carbohydrate intake,
are on the rise [18,19]. In this review, we will explore how diets high in carbohydrates affect metabolic
disorders (Table 1).

Table 1. Metabolic disorders associated with carbohydrates.

Types of
Carbohydrates Details Effects on Human Health Ref.

Starches

Carbohydrates from starchy foods Risk of metabolic disorders and
hyperlipidemia ↑ [20]

Carbohydrates from starchy foods Visceral fat and serum TG level ↑ [20]

Carbohydrates from starchy foods HDL-C level ↓ [20]

Total carbohydrate, starch and refined sugar Risk of Crohn’s disease and ulcerative
colitis ↑ [21]

Refined grains and tubers Risk of glycemia and insulin resistance ↑ [20]

Mono- and
disaccharides

Sugar-sweetened beverages Risk of type 2 diabetes ↑ [22]

Disaccharides
Risk of cardiovascular disease ↑

[23]
Fructose [24]

Fructose Lipogenesis, dyslipidemia, and visceral
adiposity ↑ [25]

Fructose Insulin resistance ↑ [25]

Sugar Risk of Crohn’s disease ↑ [21]

Sugar
Total sugars, sucrose Risk of ulcerative colitis ↑ [21]

[26]

Total sugars, sucrose, fructose Risk of pancreatic cancer ↑ [27]

Artificial
sweeteners

Saccharin and acesulfame potassium Adipogenesis ↑ and Lipolysis ↓ [28]

Saccharin, sucralose, and aspartame Insulin resistance ↑ [29]
Risk of dysbiosis and metabolic

abnormalities ↑

Diet soda Risk of type 2 diabetes and cardiovascular
disease ↑ [30]

Artificially sweetened beverages Risk of hypertension ↑ [31]

Saccharin/cyclamate aspartame/acesulfame-K Risk of urinary tract tumor and laryngeal
cancer ↑

[32]
[33]

Saccharin/cyclamate aspartame/acesulfame-K Risk of breast and ovarian cancer ↓ [32]

Artificially sweetened beverages Risk of stroke and dementia ↑ [34]

Nondigestible
carbohydrates

Additional 10 g of dietary fibers/day Risk of cardiovascular disease ↓ [35]

Cereal fibers Risk of type 2 diabetes ↓ [36]
Total dietary fibers and cereal fibers [37]

Dietary fibers Risk of colorectal cancer ↓ [38]
[39]

Dietary fibers (Particularly fruits)
Risk of Crohn’s disease ↓

[40]
Wheat bran cereal [41]

Cereal fibers Risk of gastric cancer ↓ [38]



Microorganisms 2020, 8, 427 3 of 11

Dietary carbohydrates are largely categorized as digestible and nondigestible. Digestible
carbohydrates are used to gain energy via degradation by digestive enzymes [7]. Starches, usually
from grains and tubers, are the predominant energy source, especially in agricultural areas. Mono- and
disaccharides, found naturally in fruit, are carbohydrates composed of one and two sugar molecules,
respectively. They are used to add sweetness to foods. Nondigestible carbohydrates can be divided
into fermentable and nonfermentable fibers. Fermentable fibers such as pectins, β-glucans, β-fructans,
inulins, oligosaccharides, and some resistant starches are fermented by the intestinal microbiota,
producing a variety of beneficial substances, including SCFAs [42,43]. The concept of prebiotics derived
therefrom typically refers to “a selectively fermented ingredient that results in specific changes, in the
composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host
health” [44].

The effect of high carbohydrate diets on host metabolism is known to be dependent on the glycemic
index (GI) and glycemic load (GL). The higher the GI and GL in diets, the more they increase the risk
of metabolic disorders such as type 2 diabetes and cardiovascular disease [18]. High carbohydrate
diets, particularly those that include large portions of processed grains with high GI and GL, result in
conditions likely to exacerbate dyslipidemia, which is characterized by increased triglyceride (TG)
levels and decreased high-density lipoprotein cholesterol (HDL-C) levels [45–47]. In addition, diets rich
in foods with high GI decrease fatty acid beta-oxidation and increase adipogenesis and fat accumulation
by downregulating carnitine palmitoyltransferase 1 (CPT-1) levels in mRNA [20,48]. Furthermore, high
GL diets reduce leptin levels and increase energy storage and the level of inflammatory markers such
as C-reactive protein [20,49,50]. Although the relationship was initially based on insufficient evidence
from outdated epidemiological studies, recent discoveries from the meta-analysis of cohort studies
clearly show an association between GI values and metabolic disorders such as hyperinsulinemia;
in addition, up to an 8% higher risk of breast cancer was found when comparing the group with the
lowest intake of high-GI foods to the group with the highest [51,52]. A study in Canada reported
that dietary GI was associated with an increased risk of prostate cancer and that higher dietary GL
significantly increased the risk of colorectal and pancreatic cancers [53]. Obesity, type 2 diabetes, and
other metabolic disorders associated with high GI and GL diets result in brain damage caused by
glycation, which is also associated with an increased risk of AD [54].

Recent studies suggest that insulin resistance can aggravate the adverse metabolic effects of high
carbohydrate diets [18]. Data from the Shanghai Women’s Health Study (SWHS) showed a stronger
association between rice intake, GI, and GL and diabetes risk in women with a higher waist-to-hip
ratio and body mass index (BMI) than in those with lower values of these metrics [18,55]. Furthermore,
a high intake of polished white rice does not appear to cause deleterious metabolic effects in lean
and physically active individuals such as farmers, while it has become a significant risk factor for
diabetes in urbanized Asian populations. These results indicated that a carbohydrate-rich diet induces
alterations in the gut microbiota, which is strongly associated with obesity and insulin resistance in an
animal study [56].

2.1. Starches

Chinese researchers assessing the association between starchy carbohydrate intake and metabolic
syndrome suggested that the excessive consumption of carbohydrates from starchy foods was
significantly associated with metabolic syndrome and hyperlipidemia, while carbohydrates from
other food sources showed no association [20]. Diets composed primarily of starchy carbohydrates
seem to be associated with increased visceral fat and serum TG levels, while they were negatively
associated with HDL-C in certain studies [20]. Tragnone et al. (1995) reported that high starch intake
is significantly associated with the incidence of Crohn’s disease and ulcerative colitis. In particular,
refined grains and tubers with high GI and GL may induce the incidence of glycemia and increased
insulin resistance. In contrast, whole grains seem to reduce the risk of metabolic syndrome, as the
consumption of whole grains twice daily was associated with a 21% lower risk for diabetes [18,57,58].
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2.2. Mono- and Disaccharides

Elevated consumption of sugar-sweetened beverages (SSBs) seems to promote the incidence of
type 2 diabetes even after accounting for the effects of body weight [22]. High SSB intake manifesting
high GL raises both blood sugar and insulin levels. It thereby may result in pancreatic β-cell exhaustion,
which appears to be associated with an increased risk of type 2 diabetes and cardiovascular disease in
the long term [23]. Sonestedt et al. (2012) revealed that a high intake of disaccharides, in particular,
is associated with atherogenic lipoprotein phenotype. Disaccharides metabolized in preference to
lipids in the liver cause increased hepatic de novo lipogenesis, dyslipidemia, and insulin resistance.
They may also promote visceral adiposity. Some studies suggest that diets high in monosaccharides
and disaccharides increase the risk of Crohn’s disease and ulcerative colitis as well as pancreatic
cancer [26,27,59]. Conditions such as obesity and overweight accompanied by insulin resistance may
also pose specific health risks [27].

Fructose, an integral sweetener of the food industry, is one of the key dietary catalysts in the
development of metabolic disorders by inducing gut dysbiosis [60]. Fructose consumption has been
shown to adversely affect the lipoprotein profile, leading to cardiovascular disease [24]. Moreover,
high fructose intake increases visceral adiposity, lipid dysregulation, and insulin resistance, which are
associated with increased risk for type 2 diabetes and cardiovascular disease [25].

2.3. Artificial Sweeteners

Artificial sweeteners were originally marketed as healthy alternatives to replace natural sugar.
However, their consumption has been shown to interfere with established responses that contribute to
glucose and energy homeostasis [29]. Moreover, artificial sweeteners not only stimulate adipogenesis
and suppress lipolysis in a sweet taste receptor independent manner, but they are also more likely
to cause glucose intolerance than pure glucose and sucrose [28,29]. Data from recent studies suggest
a link between the consumption of artificially sweetened beverages and a variety of negative health
outcomes, including increased risk of overweight and obesity, type 2 diabetes, metabolic syndrome,
and cardiovascular events, particularly in adults [30,61]. Suez et al. discovered that noncaloric artificial
sweeteners induce dysbiosis and metabolic abnormalities by altering the intestinal microbiota [29].
Accumulating evidence shows that artificial sweeteners are associated with an increased risk of
hypertension, stroke, dementia, urinary tract tumors, and laryngeal cancer, while they are inversely
associated with the risk of breast and ovarian cancers [32–34,61,62].

2.4. Nondigestible Carbohydrates

Both epidemiological and experimental studies suggest that dietary fiber is negatively associated
with many metabolic diseases and conditions, including cardiovascular diseases, IBD, type 2 diabetes,
and obesity [37,63–66]. A significant negative association between dietary fiber and colorectal cancer
risk has been observed in Europe [38,39]. Furthermore, recent studies have demonstrated that a diet
high in fiber is beneficial to patients with ulcerative colitis and Crohn’s, decreasing the incidence of
these diseases [40,41,67]. In Europe, cereal fiber intake has been associated with a reduced risk of
gastric cancer [38].

One mechanism by which dietary fiber is beneficial to bowel health is by increasing digesta
mass. Incompletely fermented fibers, including insoluble nonstarch polysaccharides such as cellulose,
increase digesta mass based on their presence alone, as well as by their ability to absorb water. An
increase in digesta mass contributes to health by diluting toxins, reducing intracolonic pressure, and
increasing the frequency of defecation [8]. Additionally, dietary fiber improves bowel health by
stimulating fermentation, thereby resulting in bacterial proliferation [68]. Many of the health benefits
of fiber are attributed to the effects of their fermentation by colonic microbes and their metabolites.
Fiber is fermented to organic acids that act as an energy source for other bacteria, as well as for the
intestinal epithelium and peripheral tissues [69]. SCFAs—the major end-products of carbohydrate
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fermentation—contribute to bowel health in various ways; for instance, they help to lower intracolonic
pH, thereby inhibiting the growth and activity of pathogenic bacteria [8].

3. High Carbohydrate Intake and Intestinal Microbiota

Among the myriad factors known to affect the intestinal microbiota—including delivery methods,
lifestyle, heredity, and stress—diet is known to be the primary contributor. Studies suggest that
people harbor contrasting gut microbiota composition based on the predominant diets of their local
villages [15,70]. Moreover, certain studies have demonstrated that changes in diet can cause an acute,
albeit temporary, alteration in gut microbiota composition within 24 h [17]. Consequently, we sought
to explore how diets high in carbohydrates affect intestinal microbiota (Table 2).

Table 2. Alterations of gut microbiota associated with carbohydrates.

Types of Carbohydrates Details Effects on Gut Microbiota Ref.

Long-term agrarian diets High Starches and fibers

Prevotella and Xylanibacter ↑
[16]
[15]
[70]

Bacteroides ↓
Microbial richness and biodiversity ↑

Quantities of potentially pathogenic strains ↓
Production of SCFAs ↑

Mono- and disaccharides

Daily fruits Bifidobacteria ↑ [71]
Bacteroides ↓

Lactose
Clostridia ↓ [72]

Lactobacilli ↑

Lactose Production of SCFAs ↑ [73]

Artificial sweeteners Saccharin

Bifidobacteria ↓

[29]
Bacteroides ↑
Clostridia ↑

Lactobacilli ↓
Dysboisis

Nondigestible
carbohydrates

Fruits and vegetable fibers Microbial richness and biodiversity ↑ [74]
FODMAP 1 [75]

FODMAP 1

Bifidobacteria ↑

[75]
Galactooligosaccharides [76]
Resistant starch type 4 [77]

Whole-grain cereals [78]
Fructo-oligosaccharide [79]

Resistant starch type 4
Actinobacteria ↑

[77]Bacteroidetes ↑
Firmicutes ↓

Resistant starch type 2 Ruminococcus ↑ [77]

Resistant starches Ruminococcus ↑
Eubacteria ↑

[80]
Resistant starch type 2 [77]

Resistant starches Eubacteria ↑
Parabacteroides ↑

[80]
Resistant starch type 4 [77]

Whole-grain cereals Lactobacilli ↑ [78,81]

Oligosaccharides mixture 2
Clostridia ↓ [82]

Polysaccharide peptides [83]

Polydextrose
Enterococcus ↓

[84]
Polysaccharide peptides [83]
Fructo-oligosaccharide [79]

Long-term high fiber diet Production of SCFAs ↑ [16]
1 Fermentable oligosaccharides, disaccharides, monosaccharides, and polyols. 2 Mixture of short-chain
galactooligosaccharides, long-chain fructooligosaccharides, and pectin-hydrolysate-derived acidic oligosaccharides.

In a study comparing the intestinal microbiota of European children with that of rural African
children in Burkina Faso (BF), rural children consuming agrarian diets harbored lower levels of
Bacteroides, more abundant Prevotella and Xylanibacter, higher microbial richness and biodiversity, and
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increased levels of SCFAs compared to urban children in Italy. Notably, a much lower abundance
of potentially pathogenic bacteria such as Escherichia, Salmonella, Shigella, and Klebsiella reside in the
intestinal tracts of children in BF than in those of children in Europe [16]. Interestingly, gut microbiota
adapted to the Western diet were also found in children in urbanized areas of BF in later studies,
suggesting that the differences in gut microbiota between rural BF children and urban Italian children
were not the result of racial differences. This pattern was also identified in another cross-cultural study
by Yatsunenko et al. (2012), in which the gut microbiota of the residents of Amazonas in Venezuela,
rural Malawi, and metropolitan areas of the US were compared, showing that carbohydrate-rich diets
increased the proportion of bactella in gut microbiota composition compared to Western diets high in
fat and animal proteins.

Recent studies on the mechanisms by which dietary mono- and disaccharides affect gut microbiota
conclude that they tend to increase Bifidobacteria while decreasing Bacteroides. Human subjects’ diet with
several polyols, including maltitol, lactitol, and isomalt, resulted in increased relative abundance of
Bifidobacteria with reduced Bacteroides [71]. In another study, the addition of lactose to the diet resulted
in these same bacterial shifts while also decreasing Clostridia species. It is noteworthy to consider
that many species in Clostridium cluster XIVa are known to be associated with IBS [72]. Francavilla et
al. reported that lactose supplementation also increases fecal concentrations of beneficial SCFAs [73].
These findings are interesting, as lactose is thought to be a potential bowel irritant. In contrast, artificial
sweeteners seem to induce microbial alteration directly opposite to that induced by natural sugars
as described above. For instance, saccharin-fed mice exhibited intestinal dysbiosis with an increased
relative abundance of Bacteroides and reduced Lactobacillus reuteri [29]. Bifidobacteria is thought to
lower the risk and/or symptoms of certain metabolic diseases, including IBD, colorectal cancers, and
necrotizing enterocolitis in neonates; consequently, it is widely used as a probiotic [85].

In contrast to digestible carbohydrates, nondigestible carbohydrates are not enzymatically
degraded in the small intestine. Instead, they reach the large intestine where they may undergo
fermentation by resident microorganisms [7]. Dietary fiber is a superior source of microbiota-accessible
carbohydrates that can be used by intestinal microbes for energy and by the host as a carbon
source [13,86,87]. In the process, they modify the intestinal environment, thereby rendering
them effective prebiotics [44]. Sources of prebiotics include whole grains high in fiber and
nondigestible oligosaccharides such as fructan, polydextrose, inulin, fructooligosaccharide (FOS),
galactooligosaccharide (GOS), and arabinooligosaccharide (AOS). High intake of these carbohydrates
in 49 obese subjects resulted in an increase in microbiota gene richness, while a low intake of
these substances has been shown to reduce total bacterial abundance [74,75]. One study reported
that the consumption of GOS induced Bifidobacterium species that can effectively utilize GOS [76].
Administration of resistant starch—the other nondigestible carbohydrate—was observed to increase the
abundance of Bifidobacterium adolescentis, Ruminoccocus bromii, Eubacterium rectale, and Parabacteroides
distasonis [77,80]. Many studies report that a diet high in nondigestible carbohydrates consistently
increases intestinal Bifidobacteria and lactic acid bacteria [78,81]. Additionally, polydextrose-, FOS-, and
AOS-based prebiotics have been reported to decrease Clostridium and Enterococcus species [79,82,83].
High fiber intake also increases the microbial production of SCFAs, playing an important role in the
immune system, protecting the colonic mucus barrier, and preventing IBD and colorectal cancer [88–90].
Accordingly, one study reported a reduced abundance of butyrate-producing bacteria in colorectal
cancer patients compared to their levels in healthy people [91]. In addition, when excluding the
influence of SCFAs, interactions between dietary fiber and gut microbiota are beneficial for host health;
for example, they contribute to the release of ferulic acid, which has antioxidative and anti-inflammatory
properties in plant cell walls, regulating the availability of nutrients [89,92].

Many studies reported that a high carbohydrate diet changes the intestinal microbiota, which is
associated with metabolic diseases such as type 2 diabetes, cardiovascular disease, and IBD [29,71].
High sugar consumptions induced obesity, insulin resistance, inflammation, and metabolic dysfunction
due to changes in the intestinal microbiota in animal studies [56,93]. There are still few studies on the
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correlation between microbiota changes due to carbohydrate diets and metabolic disorders in human
trials, but it is now becoming increasingly clear with recent studies.

4. Conclusions

Recently, a multitude of studies have shown that the intestinal microbiota can intermediate
between diet and metabolic syndrome while emphasizing its potential to alleviate prevalent metabolic
disorders. This article reviewed the effect of high carbohydrate diets on metabolic syndrome and the
intestinal microbiota mediating such disorders. Many studies suggest that high carbohydrate intake is
associated with the expression of markers associated with metabolic disorders and diseases, including
diabetes and cardiovascular disease. Interestingly, the link between diet and metabolic syndrome
seems to be dependent on GI and GL in the diet. A high intake of starch and mono- and disaccharides
induces an increased risk of metabolic syndrome, while artificial sweeteners—originally recognized as
healthier alternatives—actually lead to a higher risk for metabolic syndrome than natural sugars. In
contrast, accumulating evidence has shown that nondigestible carbohydrates, including dietary fiber
and resistant starch, lower the incidence of metabolic syndrome and related diseases.
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