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The skin, a self-regulating protective barrier organ, is empowered with sensory and computing
capabilities to counteract the environmental stressors to maintain and restore disrupted cutaneous
homeostasis. These complex functions are coordinated by a cutaneous neuro-endocrine system that
also communicates in a bidirectional fashion with the central nervous, endocrine, and immune
systems, all acting in concert to control body homeostasis. Although UV energy has played an
important role in the origin and evolution of life, UV absorption by the skin not only triggers
mechanisms that defend skin integrity and regulate global homeostasis but also induces skin
pathology (e.g., cancer, aging, autoimmune responses). These effects are secondary to the trans-
duction of UV electromagnetic energy into chemical, hormonal, and neural signals, defined by
the nature of the chromophores and tissue compartments receiving specific UV wavelength.
UV radiation can upregulate local neuroendocrine axes, with UVB being markedly more effi-
cient than UVA. The locally induced cytokines, corticotropin-releasing hormone, urocortins,
proopiomelanocortin-peptides, enkephalins, or others can be released into circulation to exert
systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioido-
genic effects, and immunosuppression, independent of vitamin D synthesis. Similar effects are seen
after exposure of the eyes and skin to UV, through which UVB activates hypothalamic para-
ventricular and arcuate nuclei and exerts very rapid stimulatory effects on the brain. Thus, UV
touches the brain and central neuroendocrine system to reset body homeostasis. This invites
multiple therapeutic applications of UV radiation, for example, in themanagement of autoimmune
and mood disorders, addiction, and obesity. (Endocrinology 159: 1992–2007, 2018)

The sensory and computing capabilities of the skin are
designed to control cutaneous and body homeostasis

(1). Its structure, composed of epidermis, dermis, dermal
adipose layer, and hypodermis (subcutaneous fat) with
adnexal structures, innervation, vascular system, (neuro-)
endocrine, immunological, pigmentary and metabolic
activities, and bidirectional interaction of skin with the
microbiome all serve the skin’s central function as self-

regulating protective barrier organ against an essen-
tially hostile environment (1–3). Because this crucial
interface organ also engages in thermoregulation, energy
storage, and social communication (1, 4–8), these com-
plex functions require coordination by both the local and
the central neuroendocrine system (1, 8).

Given that UV light is a key determinant of life on
Earth and that mammals exclusively come into contact
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Abbreviations: ACTH, adrenocorticotropic hormone; cHPA, central hypothalamic-
pituitary-adrenal; CNS, central nervous system; CRH, corticotropin-releasing hormone;
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with UV via their integument and eyes (9), it is timely to
reconsider the multiple different levels on which UV
impacts via these two biological ports of entry not only on
skin biology and pathology, but also on the organism as a
whole—well beyond cutaneous physiology and pathol-
ogy. Although the beneficial effect of UVB on vitaminD is
well known (10–12) and therefore only discussed cur-
sorily here, this review focuses on exploring the role of
UV and, to a lesser degree, of visible light (VIS) in the
regulation of central nervous system (CNS) and endo-
crine gland functions and overall body homeostasis.

Why Is UV Important?

The electromagnetic energy of solar radiation reaching
Earth’s surface encompasses infrared (700 nm to 1 mm),
visible (400 to 700 nm), and UV (290 to 400 nm; shorter
wavelengths, including UVC, are filtered by atmosphere),
representing 53%, 44%, and 3%, respectively, of the
ground level spectrum radiation of the sun in zenith (13, 14).

The biologically highly active UV spectra have
played a fundamental role in the origin of life on Earth
when simple organic molecules harnessed its energy and
converted it into high-energy chemical bonds to generate
molecular complexity (15–17), perhaps initiating self-
organization patterns (18) (Fig. 1). In this context, it is
important to mention that energy of UV is comparable
to energy of covalent bonds. For instance, the carbonyl
n→p* transition (l = 280 nm) demands energy of;4 eV
(i.e., ;400 kJ/mol). It means that any electron excite-
ment of a molecule with UV is enough to generate or
break a covalent bond. In a biological system, it is also a
supplemental way to support the cell with energy, while
in the beginning of biogenesis—perhaps an important or
even the only way. Under constant pressure and volume,
this must lead to an increase of the total enthalpy of the
system. The net negative change in the free enthalpy
(Gibbs free energy) is the primary condition for the
spontaneousness of a thermodynamic process. Such a
process may have led to an increase of the inner-level
organization (the self-organization) in the system.
Therefore, it is not surprising that UV together with VIS
has shaped biological evolution according to the laws of
thermodynamics and promoted a diversity of organisms
and species, including humans (16, 20, 21). Thus, the
basic photochemical processes have not only defined the
nature of biological responses but have also determined
biological evolution according to the thermodynamic
laws (Fig. 1). An example is the production of vita-
min D2 from ergosterol (present in some of the earliest
phytoplankton life forms) and vitamin D3 from 7-
dehydrocholesterol after UVB-induced carbon-carbon
bond cleavage (22).

Electromagnetic Energy of Solar Light Is
Transformed Into Chemical Energy

The biologically relevant spectra of UV, which constitute
major cutaneous stressors, include UVC (200 to 280 nm),
UVB (280 to 320 nm), and UVA (320 to 400 nm) (1, 13,
23, 24). UVC is profoundly mutagenic, lethal, and is
absorbed by the stratum corneum after irradiation by
artificial light sources (24). UVB, while representing
only a small fraction of Sun energy reaching Earth in the
form ofUV (5%of the total UV energy; i.e., 0.033 0.05 =
0.0015 = 0.15% of the total solar radiation energy
reaching Earth’s surface), is very efficient at exerting
biological effects and is absorbed mostly by the upper
layers of the human epidermis, but also penetrates to the
papillary dermis (13, 23). UVA has better penetration
reaching the reticular dermis but has 1000 times lower
efficiency at inducing biological effects (expressed as the
minimal erythema dose) than UVB (25, 26). VIS deeply
penetrates the skin reaching the hypodermis but it ap-
parently does not inflict substantial photodamage, pos-
sibly due to a relatively poor absorption in the epidermis
(9, 13, 23). The wavelengths of solar light reaching the
Earthhave similarphotonenergy (eV):VIS: 1.65 to3.1,UVA=
3.10 to 3.94, UVB = 3.94 to 4.43 and UVC = 4.43 to 12.4
(http://www.spacewx.com/pdf/SET_21348_2004.pdf). This

Figure 1. UV radiation as an initiator and driver of biological
evolution. According to the second thermodynamic law, any self-
organization must be driven by an irreversible process of energy
flow in the form of low-entropy radiation from a container of high
temperature (the Sun), and dissipate it in the form of high-entropy
radiation in a container of low temperature (the space). UV
radiation is enough to drive chemical reactions independently on
metabolism and to damage the cell. DNA effectively dissipates
the energy of excitation (19) and can store genetic information
including only a limited number of UV-induced mutations. The cell
also gets information on UV to set off the processes of repair and
photoprotection, thus maintaining homeostasis, preserving enthalpy,
and facilitating evolution. (The background: Hubble Deep Field;
NASA, https://www.nasa.gov/. The DNA icon: PngTree, https://
pngtree.com/free-icons.)
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indicates that magnitude of biological response is defined by
nature of the chromophore and quantum mechanics of
electron excitation.

In this context, most of biologically relevant chro-
mophores such as compounds with a benzene ring in-
cluding aromatic amino acids, biogenic amines, or
proteins containing corresponding amino acids, pyrimi-
dines, and purines with their derivatives alone or in
nucleic acids, trans-urocanic acid (UCA), quinones,
melatonin, indoles, melanin monomers, polymers and
precursors, unsaturated lipids and 7-dehydrocholesterol
as examples, absorb UVC and UVB, with surprisingly
high absorption spectra in the UVC range (1, 10, 12, 13,
17, 20, 21, 23, 24, 27–29). Thus, the UVC signature may
be a molecular record of the past, although UVB is highly
relevant to the evolution of the integumental structures
represented by the skin (1). In this context, UVB ab-
sorption by chromophores with their structural trans-
formation to yield biologically relevant effects are of great
importance (1, 13, 27, 30). In contrast, UVA, although
it is weakly absorbed by DNA and by limited cellular
chromophores (including NADH, reduced form of
NADP, riboflavin, porphyrins), has the phenotypic ef-
fects that are mainly secondary to oxidative changes in
the cells generated by reactive oxygen species (13, 23, 27).
Another example is generation of nitric oxide (NO) from
nitrosoglutathione (31) and photoreactivity of nitroxyl
NO2 (32).

As it relates to VIS, its main retinal chromophore, in
conjunction with opsin, is involved in phototransduction
necessary for the vision and/or regulation of circadian
rhythm (13). The flavins and pterines harvest shorter
wavelengths of VIS and in conjunction with crypto-
chromes are involved in the photoreception and photo-
transduction and may affect circadian rhythm (13).
Photogeneration of NO from nitrosoglutathione may
contribute to the overall homeostasis of the organism, as
NO, depending on the dose and the microenvironment,
may act as a parahormonal regulator or neuromodulator/
neurotransmitter, or a factor of oxidative/nitrosative
stress (33). Concerning light-driven circadian rhythm,
it can include induction of protective mechanisms nec-
essary to counteract UV-induced damages during expo-
sure to daylight, and for restoration of UV-disturbed
homeostasis during night.

The Skin-Brain Axis Displays Major
Neuroendocrine Activity

The skin is a recognized target for neuroendocrine signals
delivered from circulation (hormones and neurohor-
mones) or via nerve endings (neurotransmitters, neuro-
peptides, neurotrophins) that act on both resident and

circulating cells of the skin through activation of
specific membrane-bound and/or nuclear receptors (8,
34, 35). Examples of classical hormones or neuro-
mediators generated by the central endocrine system
regulating functions of the skin are adrenocortico-
tropic hormone (ACTH), glucocorticoids, mineralo-
corticoids, sex hormones, thyroid hormones, growth
hormone, prolactin, various neuropeptides, neuro-
transmitters, and biogenic amines.

The phenotypic consequences of the signals exchanged
between endocrine organs and the skin as well as between
the brain, spinal cord, and the skin have been a subject of
extensive reviews (1, 5, 8, 34–39) and thus will not be
discussed in-depth here.

The skin operates as fully functional peripheral
neuroendocrine organ

Because the initial recognition of the skin as the
neuroendocrine organ involved in local stress responses
that have systemic implications (8, 34), a substantial
evidence has accumulated documenting the intracuta-
neous use of the same mediators and signal transduction
pathways as the ones operating in the central neuroen-
docrine system [reviewed in (1, 4, 34–42)]. They include
capabilities to produce on site variety of steroids (35, 42,
43), proopiomelanocortin (POMC)-derived peptides,
corticotropin-releasing hormone (CRH), urocortins (34,
37), proenkephalin-derived peptides (1, 41, 44), endo-
cannabinoids (45), catecholamines (46, 47), serotonin
(48), melatonin (30, 49), thyroid-releasing hormone,
thyroid-stimulating hormone, thyroid hormones (50,
51), acetylcholine (47, 52), oxytocin (53), adipokines
(54), prolactin (55), growth hormone (56), and neuro-
trophins (57, 58). The complex interactions between
these neuro-messengers and corresponding receptors in
mammalian skin typically follow central regulatory
paradigms of the hypothalamic-pituitary-adrenal (HPA)
(59) and hypothalamic-pituitary-thyroid axes (50, 51,
54), prolactin (4, 60), or corticosteroidogenic (1, 36, 40,
61), cholinergic (52), opioid (41), biogenic amines (47,
48), melatonin (49, 62), and endocannabinoid (45) cir-
cuitries, complete with positive and negative feedback
loops (Fig. 2). These interactions occur in addition to
vitamin D formation and its activation through canonical
(11, 12) and noncanonical pathways (43, 63, 64).

The skin immune system communicates with this
diffuse neuroendocrine system in a bidirectional fashion
using the same neuroendocrine messengers, cytokines,
and cognate receptors, presumably to protect the local
skin homeostasis against external stressors (1, 4, 8, 37).
Release of soluble neuro-endocrine-immune factors into
the circulation can exert systemic, endocrine, and CNS
effects, as is impressively illustrated by UV radiation
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(UVR)–induced b-endorphin (1, 65–67) and CRH (66,
68) releases from the skin, whereas immune cells that
have been UV stimulated in the skin can act as cellular
“second messengers” of the cutaneous neuro-endocrine-
immune system to impact on global organismal ho-
meostasis (Fig. 2).

NO and its donors (nitrosothiols) represent important
hormonelike regulators of skin homeostasis; at the same
time, NO is a mediator of the immunological, melano-
genic, and neurologic effects of UV (69, 70). NO may be
produced in both enzymatic and nonenzymatic fashion.
There are three types of NO synthases encoded in various
loci (71), and expressed in various skin cells according to
the skin status (normal vs inflamed) (72) and the pre-
dominant phase of hair follicle cycling (73, 74). When
produced in high amounts, NO itself becomes a non-
specific proinflammatory effector, and an important ef-
fector of oxidative/nitrosative stress (e.g., by generation
of peroxynitrite) (75).

NO may affect melanogenesis in both normal and
malignant melanocytes (76, 77) and it potently regulates
local blood flow in a paracrine manner (70). These NO-
related effects strongly depend on UV. Importantly,
blood-borne nitrosothiols such as nitrosoglutathione
nonenzymatically release high amounts of NO upon
action of UVA and short-wave VIS (31, 78). Thus,

nitrosothiols serve as transient NO storagemolecules and
NO transport vehicles to distant body sites, executing
the endocrine way of NO action. Under physiological
conditions, Cu,Zn-dependent superoxide dismutase
may reversely reduceNO to the nitroxyl anionNO2 (79).
The latter is a chromophore for UV, and primarily un-
dergoes phototransition to the singlet nitroxyl 1NO2

isoelectronic with singlet oxygen 1O2 (80).

Neuroendocrine communication within the
skin-brain axis is bidirectional

Most skin components are innervated by the auto-
nomic and/or somatosensory nerve fibers that transmit
signals from and to the brain via spinal cord, cranial
nerves, the sympathetic chain (paravertebral), and
parasympathetic ganglia (8, 38). Moreover, direct spino-
cutaneous neural reflexes are established that do not
require direct input from the brain (38). The classical
sensory activities and routes of signal transmission
including touch, pain, itch, temperature, stretch, and
vibration are well established (38). Similarly, the
descending pathways involved in the regulation of skin
functions such as thermoregulation, sweat gland func-
tions, blood flow, and other adnexal functions are also
relatively well defined (38).

Although the importance of psychological factors in
dermatology has long been recognized (81–83), psy-
chodermatology as a field has recently witnessed a re-
naissance (84–87), not the least through improved
understanding of how perceived (psychoemotional) stress
aggravates or triggers skin pathology (e.g., via the in-
duction of neurogenic inflammation) (1, 5, 37, 38,
88–94). This growing body of knowledge is com-
plemented by more recent insights into nonclassical skin
sensory activities that encompass the sensing of defined
biological (95–97) and physicochemical insults/stimuli,
such as olfactory receptors or TRP mediated signals, VIS,
and UV, which have been considered in skin physiology
only relatively recently (1, 98–100).

Somatosensory nerves not only deliver signals from
and to the brain through spinal cord or cranial nerves, but
also form local networks transmitting signals between
different skin compartments, adnexal structures, and the
hypodermis, using ante- and retrograde reflexes, as dis-
cussed previously (8) (Fig. 3). For example, sensory nerve
endings penetrate distal epidermal cell layers until im-
mediately below the level of stratum corneum and in-
nervate Merkel cells in both the epidermis, namely in
tactile discs (Pinkus Haarscheiben), and the outer root
sheath of the hair follicle, and densely innervated the
bulge stem cell region of hair follicles (101–103). Thus,
disturbances in the upper epidermis and hair follicle
epithelium can be sensed and translated into electrical

Figure 2. Skin neuroendocrine system. The skin neuroendocrine
system integrates locally and centrally produced classical neuroendocrine
or endocrine signaling molecules, thus providing a natural
platform of interaction between internal organs and environment.
To respond to a variety of internal and external signals, skin cells
not only are sensitive to neurohormonal regulation but also produce
elements of the HPA axis or hypothalamic-pituitary-thyroid axis, as
well as other neuropeptides, biogenic amines, serotonin, melatonin,
NO, opioids, cannabinoids, catecholamines, acetylcholine, steroids,
secosteroids, and growth factors adipokines and cytokines.
Skin’s neuroendocrine system comprises epidermal and dermal
cells including resident immune cells, nerve endings, and
sensory receptors in the skin and its appendages. BM, basement
membrane; IC, immune cells; HPT, hypothalamic-pituitary-
thyroid.
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impulses that are rapidly transmitted to the spinal cord or
via retrograde reflex arches leading to enhanced in-
tracutaneous release of neuropeptides, neurotransmit-
ters, and/or neurotrophins from sensory nerve fibers as
proposed originally (8).

These sensory innervation pathways can also activate
nerve fiber-associated mast cells that appear to play a key
role as “central switchboards” of neurogenic inflam-
mation, setting off a proinflammatory chain of neuro-
genic skin inflammation events that also impacts on
other intracutaneous immunocytes (104–107), and can
even have systemic immunomodulatory effects (Fig. 3).

Interestingly, it is known that the skin generates electrical
fields under conditions of wound healing and that, vice
versa, electrical stimulation can promote both wound
healing and the induction of neural differentiation
markers (108).

Therefore, it is also conceivable that local activation of
the endothelium of the papillary dermis plexus might
transmit an electric current to the deep dermal or hy-
podermal plexuses, because these plexus form one con-
tinuum resulting in phenotypic activities and/or release of
soluble mediators (Fig. 3).

UVR regulates body homeostasis via activation of
the central neuroendocrine system

Because the original concept that mammalian skin
harbors peripheral equivalent of the central HPA (cHPA)
(109), which was further developed into the concept that
HPA organization was first developed in the integument
during evolution and was only later adapted by the
central neuroendocrine system (110), substantial evi-
dence has accumulated that strongly supports the notion
that skin and its appendages are usingmolecular elements
of the HPA to coordinate responses against stressors
[reviewed in (4, 5, 37, 59, 104, 111–116)].

UVR stimulates both the intracutaneous and the
cHPA axis

However, although on the central level, all regulatory
elements of the HPA (hypothalamus, pituitary, adrenal
glands, cytokine signaling) are anatomically separated
and have a linear hierarchy (117, 118), these exist in close
proximity to each other and often even within the same
epithelial cells of mammalian skin, thus securing non-
linear interactions that are evolutionary conserved (1, 4,
5, 37, 110). Therefore, in principle, the local CRH/
urocortin (119–121), POMC-signaling axes including
the POMC-derived peptides such as a–melanocyte-
stimulating hormone (MSH), b-endorphin, and ACTH
(34, 122), and the cutaneous steroidogenic systems (43,
61, 123) all can act both individually and in concert to
regulate local tissue homeostasis (4, 35, 37). A disruption
in these interactions may result in skin pathology, as has
recently been demonstrated for psoriasis (1, 5, 36, 37,
104, 111, 112, 124–126).

UVB can upregulate a-MSH receptor (MC1R) ex-
pression and activity (127, 128), POMC expression, and
POMC peptide production including that of a-MSH,
b-endorphin, and ACTH (127, 129–131), presumably to
regulate mammalian skin pigmentation, to protect skin
from UV induced injury, and to modulate skin immune
responses (1, 34, 122, 128, 132–135). UVB also stimu-
lates CRH and urocortin production (131, 136–138) and
changes CRH receptor type 1 (CRH-R1) expression

Figure 3. The interaction between the skin’s endocrine system and
central neuroendocrine system in stress response. The skin stress
response system can activate central neuroendocrine responses with
its direct homeostatic, metabolic, and phenotypic consequences.
The crosstalk between local and central elements of stress response
is maintained by bidirectional neuronal stimulation through naked
nerve endings in the epidermis and innervation of adnexal structures
(hair follicles; sebaceous, eccrine, and apocrine glands; arrector pili
muscle). Active neuroendocrine mediators could also be directly
secreted in response to stimuli by neurons, epidermal keratinocytes,
melanocytes, and Langerhans cells, as well as dermal residing mast
cells, macrophages, and fibroblasts or infiltrating lymphocytes and
granulocytes. Furthermore, the circulatory system provides an
additional route for an exchange of signaling molecules between
the skin’s neuroendocrine system and central endocrine organs,
including elements of the HPA axis. Constant exchange of
neuroendocrine mediators between skin and other organs is
responsible for the maintenance of local and global homeostasis
and skin response to external and internal signals. BM, basement
membrane; F, fibrocytes/fibroblasts; IC, immune cells; K,
keratinocytes; LC, Langerhans cells; M, melanocytes.
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pattern and activity (139–141), all to restore local ho-
meostasis and to build protection against UVB damage
(1, 37, 142). However, only recently it has been dem-
onstrated that UV can simultaneously stimulate all ele-
ments of the cHPA including glucosteroidogenesis (66,
131, 136, 143). This stimulation is dependent on
wavelength with the shortest spectrum UVC having the
strongest effect, followed by UVB, whereas UVA has
no or minor effects restricted to increases of CRH and
b-endorphin peptides (131, 136).

Importantly, the exposure of shaved back skin of
C57BL/6 mice to UVB significantly stimulates cHPA axis
activity already 12 and 24 hours after irradiation (66).
Moreover, UVB enhances skin and plasma levels of CRH,
urocortin, b-endorphin, ACTH, and corticosterone
levels, along with simultaneous stimulation of CRH gene
and protein expression in the paraventricular nucleus of
the hypothalamus and of MC2R, StAR (steroidogenic
acute regulatory protein), and CYP11B1 genes in adre-
nals. Because hypophysectomy abolishes UVB stimula-
tion of plasma, but not of skin corticosterone levels, and
has no effect on UVB stimulation of CRH and urocortin,
this documents that the regulation of body homeostasis
by UVB through the cHPA axis requires an intact pitu-
itary for systemic effects.

This systemic stimulation of POMC peptides and
corticosteroidogenesis by UVB provides a plausible en-
docrine mechanistic explanation of the well-known
phenomenon of systemic immunosuppression by UVB
(144), which was traditionally thought to be secondary to
changes in the keratinocyte cytokine signaling milieu
and a result of immunosuppressive T-cell activities (14,
144, 145). These systemic immunosuppressive effects
appear to be independent from the UVB-induced pro-
duction of vitamin D (145, 146). As a consequence,
stimulation of the local and systemic HPA axes or their
individual elements (POMC signaling and steroidogen-
esis), which encompass both chemical mediators, and
stimulation of cognate receptors must play an important
but long neglected role in intracutaneous or systemic
immunosuppression.

In parallel, the Hiramoto group (147–150) reported
remarkable systemic effect of exposing the eyes of
C57BL6mice to UVB,which increased the serum levels of
a-MSH (147–149), ACTH, CRH, and urocortin 2 (149,
150) within hours after the UVB exposure. Hiramoto
et al. (147) proposed that this systemic neuroendocrine
UVB effect is mediated through stimulation of the hy-
pothalamic pituitary axis in an NO-dependent manner
through the ciliary (parasympathetic) ganglia involving
the first branch of the trigeminal nerve (ophthalmic) but
not through the optic nerve. Thus, UVB can activate
cHPA or its elements both through the skin and/or via the

eye (98). Furthermore, irradiation of the eye by UVA led
to the stimulation of systemic a-MSH, ACTH, and
b-endorphin with downstream immunosuppressive ef-
fects (150–152), with signal transmission to the brain
involving optic but not trigeminal nerve (151). Thus, even
eye-transmitted systemic neuroendocrine effects, at least
to some extent, can be regulated by cutaneous structures
that impact the ocular transmission of UVB energy.

In this context, one should not forget that UVB energy
can be absorbed by lobular, fornical-orbital, and tar-
sal conjunctiva and by adjacent connective tissue as
well as posterior and intermarginal cutaneous elements
of the eyelid, all of which represent integumental struc-
tures (98).

Interestingly, irradiation of the ear also enhances
POMC-derived a-MSH blood levels (147–149), consis-
tent with UVB activation of central POMC activity
through the skin (66–68). Our own data also indicate
involvement of neural signal transmission from the skin
to the CNS with partial deviation from classical HPA
paradigms, as documented by the rapid stimulation of
brain and plasma CRH, b-endorphin, ACTH, and cor-
ticosterone levels 30 and/or 90 minutes after UVB ex-
posure, with hypophysectomy having no effect on
UVB-induced increases of systemic corticosterone (68).
In summary, UVR can thus regulate entire or selected
elements of the cHPA axis through neural and humoral
mechanisms that are wavelength-dependent and defined
by anatomical structures sensing UV energy.

Stimulation of the central POMCand related systems
exerts downstream homeostatic effects

Recently, the hypothesis that UV can even regulate
internal organ functions through the brain or spinal cord
reflexes (8) has received experimental support (67, 68).
Specifically, exposure of back skin to the UVB stimulated
the expression of Pomc and MC4R messenger RNAs in
the hypothalamus with concomitant inhibition of AgRP
in a time- and dose-dependent fashion. The effect on
Pomc was seen as early as 1 hour after exposure to UVB
(67). These changes in gene expressionwere accompanied
by more a-MSH and MC4R-immunoreactive neurons in
the arcuate nucleus as well as by increased brain and
plasma levels of a-MSH and b-endorphin (67). It was
suggested that this route of stimulation might link UVB
with the central regulation of body metabolism and
feeding behavior (67).

This surprising discovery was supplemented by the
finding that UVB-exposure rapidly (i.e., after 30 and
90 minutes) increases of CRH and b-endorphin levels in
the brain and plasma; furthermore, ACTH and corti-
costerone plasma levels were quickly raised, as were
adrenal StAR and CYP11B1 gene expression (68). Thus,
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UVB can also rapidly activate the POMC system in the
brain, followed by the release of centrally derived POMC
peptides into the circulation, in the manner that is sep-
arate and distinct from the HPA axis.

The UVB reception in the skin not only acti-
vated central neuroendocrine pathways, but also in-
duced rapid systemic immunosuppressive effects, which
showed an extended duration, as illustrated by in-
hibition of Th1 and Th2 activities in the spleen 30 and/or
90 minutes after UVB exposure that lasted for at least
24 hours (68). The concomitant rapid stimulation of
systemic CRH, ACTH, b-endorphin, and corticoste-
rone, accompanied by rapid immunosuppressive effects
on splenocytes appeared to be independent of the
cHPA axis (68). The proposed mechanism includes
rapid transmission of the signal via the ascending and
descending autonomic nervous system pathways of the
spinal cord (e.g., preganglionic intermediolateral nu-
cleus) to influence several nodes of the brains’ auto-
nomic control network (e.g., amygdala, hypothalamus,
periaqueductal gray matter, raphe nuclei, and selected
brainstem nuclei) and subsequently, may have result in
an activation of corticosteroidogenesis in adrenal cor-
tex and sympathetic inhibition of immune activity in the
spleen (68).

The Hiramoto group (147–157) has also shown that
exposure of the eye to the UV not only activates central
(pituitary) POMC-signaling system in a wavelength-
dependent manner (UVB vs UVA) that uses NO signal-
ing, but also has distinct functional effects on internal
organs and the skin depending on times postradiation
varying substantially between 6 hours (151, 152),
several days (149, 153), and 20 weeks (157) after UVR-
exposure. These authors showed stimulation of cutane-
ous melanocytes by UVB-induced a-MSH (147, 149),
downregulation of cutaneous Langerhans cells by UVA
(151), deterioration of dextran sodium sulfate-induced
ulcerative colitis by UVB and its improvement by UVA
(150), and amelioration of atopic dermatitis by UVA
(156). Moreover, they reported amelioration of colon
carcinoma induced by azoxymethane and dextran so-
dium sulfate through UVA stimulation of b-endorphin
and methionine-enkephalin (157) and modulation of
mucosal intestinal functions by UVA (153).

The proposed mechanism for these UV-induced effects
involves activation of the hypothalamic-pituitary
(147–149, 151) or HPA axis (152). Although the re-
quirement for intact optic nerve function in UVA in-
duced signal transmission (151) suggests a critical
involvement of the retina in this process, lack of such
requirement for UVB (147) indicates an involvement of
integumental structures connected with the eye (e.g.,
conjunctiva and eyelid) (98). Interestingly, repeated

UVB exposure of the skin can negatively affect hip-
pocampal neurogenesis and synaptic plasticity along
with HPA axis activation (158).

UV stimulates the opioidogenic system
The UVB stimulated b-endorphin levels in the skin

(66, 131, 143), plasma (65–68), and brain (66–68) can
be linked to the phenomenon of “UVB addiction” (65,
159, 160) as well as to nociceptive and other behavioral
effects (1, 65, 67). It has been hypothesized that these
UVB-induced, b-endorphin-dependent behavioral and
POMC pigmentary activities are regulated by p53 (65,
161). This requires independent confirmation, because
there is no p53 responsive region in the POMC gene and
because C57BL6 mice (i.e., model used in these studies)
produces eumelanin constitutively without requirement
of POMC (162, 163). In any case, that UVB can stim-
ulate b-endorphin production not only in the skin (66,
131, 143), but also in the brain shortly (68) or after
longer time periods post exposure (66, 67) identifies
an exciting area for future research into how light
“touches” the brain.

UVA also stimulates b-endorphin in the skin (131) and
colon with concomitant increases of methionine-
enkephalin and attenuation of colonic carcinogenesis
(157). This not only documents that UVA can exert an
opioidogenic effect (1, 41) but also that this may have
selected beneficial health effects (157). Concerning en-
kephalins, it has been demonstrated that UVB can
stimulate proenkephalin gene expression in skin cells in a
dose- and time-dependent manner (44).

UVB exerts indirect effects via vitamin D actions
The pleiotropic effects of vitamin D including en-

docrine activities are well documented and extensively
reviewed (10–12, 164, 165). The effects of active forms
of vitamin D on brain functions including regulation of
biogenic amines levels (166, 167) and neurosteroidal
activity (168) are being gradually appreciated. Recent
evidence documents an involvement of vitamin D in the
upregulation of tryptophan hydroxylase type 2, with
enhancement of brain serotonin exerting complex be-
havioral effects (169–171). Furthermore, it has been
demonstrated that 1,25(OH)2D3, and recently discov-
ered noncalcemic vitamin D analogs (43, 172, 173), can
stimulate the expression of CRH, urocortins, and
POMC, and their receptors, CRHR1, CRHR2, MC1R,
MC2R, MC3R, and MC4R in human skin (174). Thus,
active metabolites of vitamin D could contribute in-
directly to the UVB induced behavioral effects or may
impact the stimulation of the HPA and/or CRH and
POMC-signaling systems in the periphery or at the
central levels.
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Major Open Questions and How to
Address Them

One of the most intriguing and challenging current
questions is whether human skin can sense and trans-
form VIS into organized local and central responses
represents a challenging question, because of the central
function of the eye in the photoreception and central
regulation of circadian rhythm.

The skin has eyelike photosensory system
One can argue that such system should operate as a

conserved mechanism employed by invertebrates and
lower vertebrates who use melanopsin and invertebrates
opsins for light sensitivity outside the eye (175–177). This
mechanism could overlap with the cutaneous UVR re-
ception system as previously predicted (128, 178). In
fact, experimental evidence is accumulating for the
establishment of cutaneous photosensory mechanisms
composed of different light-sensitive opsins, namely
rhodopsin, melanopsin, neuropsin, and encephalopsin
and photosensitive circadian clock proteins (179–183).
Activation of these photosensory systems in skin and skin
cells by visible or UVA light leads to measurable phe-
notypic effects (184–186) of which the best characterized
is melanin pigmentation (180, 187–189). For example, it
has been proposed that UV phototransduction in mela-
nocytes involves a retinal-dependent signaling cascade
that involves the activation of a Gaq/11-dependent
phosphoinositide cascade, which resembles photo-
transduction in the eye (190). This UV reception mech-
anism involves the activation of transient receptor
potential A1 (TRPA1) ion channels (190–192).

Perhaps, the greatest experimental challenge in dis-
secting this cutaneous photosensing system is how to
distinguish VIS from UV effects and to define the rele-
vant pathways, because UV lamps contain also VIS
spectra. It also relates to the regulation of the local cir-
cadian rhythm and its communication with the local
neuroendocrine systems (193) including serotonino-
melatoninergic pathways (30, 48, 49). Furthermore,
the skin is rich in pterines, light chromophores, and
has an efficient system for their de novo synthesis and
recycling, which are important not only for local phe-
notypic effects and homeostasis but also for the local
synthesis of biogenic amines (194–198). This raises ad-
ditional questions on the wavelength-dependent de-
tection of solar light energy by the skinwith its translation
into precise signal transduction pathways affecting local
and systemic neuroendocrine systems. In addition, the
recently described discovery shows the prosurvival effect
of infrared A spectrum of solar radiation onUV-damaged
human melanocytes (199, 200). Also melanocytes and

keratinocytes show distinctive responses to UVR (201),
and different spectra of light have different effects on free
radical formation and lipid composition in the skin (202).

How absorption of the UV energy by the skin is
translated into central neuroendocrine activities

Another key problem is how to dissect direct UVR
effects from indirect ones and their further downstream
signaling. The direct effects are secondary to the ab-
sorption of UV energy by specific chromophore(s) in a
wavelength-dependent manner, followed by conforma-
tional changes of the interacting protein (light receptors).
The latter effects also include the direct activation of
sensory nerve endings via UV-induced changes in the
physicochemical environment (e.g., pH, temperature, free
radicals, local ion concentrations) of the exposed nerve
ending or its close vicinity. Alternatively, depolarizing cell
membrane damage could result in electrical impulses
that are transmitted after reaching activating threshold
(8, 178).

Interestingly, in planarians TRPA1 can be activated by
reactive oxygen species indicating a conserved mecha-
nism for animal nociception induced by physicochemical
factors (203). Therefore, it is conceivable that the spec-
ificity of UV responses may be enhanced by the receptors
coupled to ion channels, such as members of TRP family
including TRPA1. In addition, UV can directly activate
TRPA1 via the chromophore retinal in melanocytes
(190–192), cells of neural crest origin.

Another important question is which chromophores
have appropriate protein partners in skin cells or nerve
endings that trigger signal transduction pathways, which
then translate the frequency of electromagnetic energy
into chemical messengers. In this scenario, the nature of
the chromophore with its absorption of a defined fre-
quency of electromagnetic radiation would define the
specificity for UVB, UVA, or VIS responses. A classical
example is 7-dehydrocholesterol, which after absorption
of UVB photoisomerizes to previtaminD (10, 12). UCA is
another chromophore, whose photoproduct, cis-UCA,
although being a potent immunosuppressor (204), can
also interact with serotonin receptors (205–207). Also,
tryptophan photoproducts can interact with the aryl
hydrocarbon receptor (208–210). Moreover, UVB ab-
sorption by DNA resulting in DNA damage concomi-
tantly stimulates pigmentation and both expression and
activity of POMC (211, 212) as an indirect effect of UVR
(1). Finally, the contribution of lipids in UV transduction
must not be underestimated in this context, given their
paramount role in epidermal barrier functions (2, 3) and
predominant absorption of short UVB wavelengths by
the stratum corneum with lower penetration to stratum
granulosum (9, 23, 24).
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The indirect chemical messengers for UVR include
local neurohormones produced and released by skin cells
(e.g., ACTH, a-MSH, b-endorphin, CRH, urocortins,
enkephalins, cytokines, steroids, and others) [reviewed in
(1, 35, 37)]. Their local and systemic effects would be
defined by cell types producing such messengers, and
their spatial location including proximity to blood ves-
sels and nerve endings. The former will secure entry of
soluble mediators into the circulation (8), whereas the
latter will include rapid transmission to the CNS once
locally produced enkephalins, b-endorphin, a-MSH,
serotonin, or other neurohormones bind to the receptors
expressed on cutaneous nerve endings (8). It must be
noted that sensory nerves express opioid, cannabinoid,
MC1, serotonin, and other receptors for locally produced
neurotransmitters and neuropeptides as well as cytokine
receptors (38, 41, 96, 97, 104, 133). The future challenge
is to map such receptor expression in sensory nerves in
relation to their anatomical and spatial distribution
within human skin, along with measuring the subsequent
central input after intracutaneous receptor stimulation,
preferably by noninvasive brain imaging techniques such
as functional magnetic resonance imaging or transcranial
magnetic stimulation (88).

The downstream signaling will include stimulation
of endocrine organs (39) or systemic immune system
(213–215) secondary to UV-induced entry of humoral
signals to the circulation (CRH, urocortins, POMC-
peptides, cytokines, serotonin, melatonin) or the organ
activation via neural transmission through somatosen-
sory and autonomic system with signals originating from
or bypassing brain (1, 8, 30). The downstream signaling
will be represented by endocrine activities of the pituitary,
adrenal glands, and possibly other glands such as thyroid,
pancreas, and gonads, which will regulate body ho-
meostasis andmetabolic activities. The final effectors will
be internal organs (e.g., GI tract, liver, spleen, kidney, or
lungs) with their changed activities secondary to UV
exposure of the skin.

The final challenge is to define which skin cell type
would act as the main system that senses and computes
UV energy and then translates this into defined biolog-
ical responses in the cutaneous neuroendocrine con-
cert. Besides UV-sensitive keratinocytes, other obvious
candidates are melanocytes that can sense UV and re-
spond to it through melanogenesis, synthesis, and re-
lease of neurohormones and cytokines; moreover,
melanocytes can engage in direct cell–cell contact via
their UV-stimulated network of dendritic processes that
communicate with multiple cellular targets as proposed
previously (216–219) (Fig. 4). In the dermis, instead,
UV-sensitive mast cells (221–223) may operate as mas-
ter regulators that translate light energy into biological

responses (104, 223). Given that, in murine skin with
synchronized hair follicle cycling, numerous cutaneous
functions, ranging from pigmentation via type IV immune
and photoallergy responses to neuroendocrine activities
and wound healing, show major hair cycle-associated
fluctuations (4, 224–229), the hair follicles also impact
profoundly on cutaneous responses to UVR.

Afferent neuronal UV-induced signaling pathways
may originate in skin

Although the sensory innervation of the skin is well
characterized (1, 38, 230, 231), there is lack of satis-
factory information on what type of sensory nerves are
UV responsive, and where, how, and via which neural
route UV-induced signals are transmitted. It is likely that
signal transduction will be dependent on neuroanatom-
ical differences in skin innervation (e.g., between head/
neck, torso, and extremities). Another main challenge in
this context is to determine which crucial coordinating
brain structures are activated in addition to hypothala-
mus (66–68, 147, 151), including arcuate nucleus and
paraventricular nucleus (66–68), and through which
communicating network the UV-induced signals follow
(98). It is also unclear which effector systems (sympa-
thetic or parasympathetic) are activated and which UV-
induced spinal or extraspinal neural circuits can bypass
the brain to directly target immune organs such as the

Figure 4. Melanocyte as the computing UV sensor, effector,
and master regulator in the epidermal neuroendocrine concert.
Melanocytes—melanin-producing cells with neuroendocrine
capabilities (122, 218)—after receiving UV electromagnetic waves,
decode them according to their frequency, translate the absorbed
energy/information into biologically relevant signals and activities,
and convey them to multiple effector targets (217, 218). The UV-
induced formation of multiple dendrites (122, 128, 212, 220) allows
them not only to amplify the biological effect (right, output) but
also to enhance the capability of sensing UV-induced disturbances
in epidermal homeostasis by collecting information from multiple
structures at different, sometimes distant spaciotemporal
locations (left, input). hv, a quantum of UV irradiation.
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spleen (68) and other internal organs (98, 150, 153, 157).
These questions remain open because experiments on
mice, a nocturnal species with distinct neurobiological
characteristics, may provide only limited information
that is directly transferable to humans (1, 35, 37).

Conclusions and Future Directions

Because UV energy has shaped both biological evolu-
tion and homeostatic responses, it is not surprising that
UV regulates global homeostasis after absorption and
transduction of its electromagnetic energy into chemical,
hormonal, and neural signals in a wavelength-dependent
fashion, defined by its tissue penetration and the nature of
the chromophores UVR interacts with. This homeo-
static activity includes activation of the CNS and/or
endocrine glands through neural transmission or chem-
ical messengers originating in the skin. This type of
regulation, although representing relics from earlier
periods of biological evolution, follows precise neuro-
endocrine regulatory mechanisms of which examples
are represented by HPA, CRH-POMC, opioidogenic,
serotonin/melatoninergic, secosteroid/steroidogenic, or
NO systems.

In dermatology, phototherapy is used to treat in-
flammatory, pigmentary, and other skin disorders (23,
87). Phototherapy includes direct use of UVB or UVA,
psoralens with UVA, or various combinations thereof.
An increasing range of dermatoses and cosmetic skin
conditions may also be amenable to phototherapy with
VIS (232–234). Thus, with the increasing application of
UVR and VIS to human skin, it becomes ever-more
important to understand how exactly UV and VIS light
“touch” the brain along the routes synthesized in this
review, and to which extent the clinically desired out-
comes of UV therapy reflect secondary phenomena that
result from resetting the body homeostasis through ac-
tivation of central neuroendocrine pathways.

That phototherapy also may hold promise in the
treatment of selected systemic autoimmune diseases such
as rheumatoid arthritis, inflammatory bowel diseases,
multiple sclerosis, and scleroderma (59, 66, 68, 150, 152)
all of which renders the need to better understand the UV-
skin/eye-brain axis discussed here even more pressing.
This is further underscored by emerging evidence that UV
therapy may also be used in treatment of chemical ad-
diction and in mood disorders due to its opioidogenic
effects (1, 44, 65–67), and that UVmay even be employed
to regulate body metabolism, food intake, and appetite
via its effects on POMC,CRH, and agouti-related protein
signaling (67, 98).

Thus, we have long entered into an exciting new
territory of endocrinological research that may perhaps

best be termed “photo-neuroendocrinology” and is just
waiting to be systematically explored and therapeutically
targeted.
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132. BöhmM, Wolff I, Scholzen TE, Robinson SJ, Healy E, Luger TA,
Schwarz T, Schwarz A. Alpha-melanocyte-stimulating hormone
protects from ultraviolet radiation-induced apoptosis and DNA
damage. J Biol Chem. 2005;280(7):5795–5802.
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