

NIH Public Access

Author Manuscript

Growth Horm IGF Res. Author manuscript; available in PMC 2009 April 1.

Published in final edited form as: Growth Horm IGF Res. 2008 April ; 18(2): 166–173.

Insulin-like growth factor-(IGF)-axis, inflammation, and glucose intolerance among older adults

Swapnil N. Rajpathak, MD DrPH¹, Aileen P. McGinn, PhD¹, Howard Strickler, MD MPH¹, Thomas E. Rohan, MD PhD¹, Michael Pollak, MD³, Anne R. Cappola, MD ScM⁵, Lewis Kuller, MD DrPH², XiaoNan Xue, PhD¹, Anne B. Newman, MD MPH², Elsa S. Strotmeyer, PhD MPH², Bruce M. Psaty, MD PhD⁴, and Robert C. Kaplan, PhD¹

1 Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, N

2Departments of Medicine (ABN) and Department of Epidemiology (ABN, LK, ESS), University of Pittsburgh, Pittsburgh, PA

3*Cancer Prevention Research Unit, Departments of Medicine and Oncology, McGill University, Montreal, Quebec, Canada*

4Departments of Epidemiology, Medicine and Health Services, University of Washington, Seattle WA

5Department of Medicine and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia PA

Abstract

Increasing evidence suggests that the insulin-like growth factor (IGF)-system may play a role in glucose metabolism and may also be associated with systemic inflammation. The aim of this study was to evaluate the association of insulin-like growth factor-1 (IGF-I) and its binding proteins,

NIH Statement "This is an un-copyedited author manuscript copyrighted by The Endocrine Society. This may not be duplicated or reproduced, other than for personal use or within the rule of "Fair Use of Copyrighted Materials" (section 107, Title 17, U.S. Code) without permission of the copyright owner, The Endocrine Society. From the time of acceptance following peer review, the full text of this manuscript is made freely available by The Endocrine Society at http://www.endojournals.org/. The final copy edited article can be found at http://www.endojournals.org/. The Endocrine Society disclaims any responsibility or liability for errors or omissions in this version of the manuscript or in any version derived from it by the National Institutes of Health or other parties. The citation of this article must include the following information: author(s), article title, journal title, year of publication and DOI."

Participating CHS Investigators and Institutions:

(All Investigators here listed have provided signed permission to be acknowledged)

Wake Forest University School of Medicine: Gregory L. Burke MD, Sharon Jackson, Curt D. Furberg, David S. Lefkowitz, Mary F. Lyles, Cathy Nunn, John Chen, Beverly Tucker, Harriet Weiler. Wake Forest University—ECG Reading Center: Ronald Prineas MD PhD. University of California, Davis: John Robbins MD MHS. The Johns Hopkins University: Linda P. Fried MD MPH. The Johns Hopkins University—MRI Reading Center: David Yousem MD MBA. University of Pittsburgh: Lewis H. Kuller, MD DrPH. University of California, Irvine—Echocardiography Reading Center (baseline): Julius M. Gardin MD. Georgetown Medical Center —Echocardiography Reading Center (David Scherter): John S. Gottdiener MD. New England Medical Center, Boston—Ultrasound Reading Center: Daniel H. O'Leary MD. University of Vermont—Central Blood Analysis Laboratory: Russell P. Tracy PhD. University of Arizona, Tucson—Pulmonary Reading Center: Paul Enright MD. Retinal Reading Center-University of Wisconsin: Ronald Klein MD. University of Washington—Coordinating Center: Richard A. Kronmal PhD.

Disclosure statement: The authors have nothing to disclose

Corresponding Author: Swapnil Rajpathak, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 11375; Email: srajpath@aecom.yu.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Steering Committee Chairman: Curt D. Furberg, MD PhD, Wake Forest University School of Medicine. NHLBI Project Office: Jean Olson MD MPH.

IGFBP-1 and IGFBP-3, with glucose intolerance and inflammation among older adults. We conducted a cross-sectional analysis in a in a random subsample (n=922) of the Cardiovascular Health Study (CHS), a prospective cohort of men and women \geq 65 years. Mean IGFBP-1 levels were significantly lower in older adults with impaired glucose tolerance (IGT), impaired fasting glucose (IFG) and diabetes compared to those with normal fasting and post-load glucose. High IGFBP-1 was associated with a reduced prevalence of IGT and IFG; the multivariable OR between extreme quartiles of IGFBP-1 was 0.60 (95% CI: 0.37, 0.95; p-trend: 0.03) for IGT and 0.41 (95% CI: 0.26, 0.64; p-trend: <0.01) for IFG. We did not find any significant association between IGF-I and glucose intolerance in this study and the association for IGFBP-3 was less clear. However, low levels of IGF-I and IGFBP-3 were associated with increased levels of markers of inflammation including C-reactive protein and interleukin-6 levels. We conclude that a among adults \geq 65 years, low IGFBP-1 levels are associated with increased prevalence of glucose intolerance. We did not confirm prior associations of low IGF-I with glucose intolerance in this cohort of older individuals.

INTRODUCTION

Insulin-like growth factor (IGF)-1 is the primary mediator of the effects of growth hormone and shares structural homology with insulin. Increasing evidence suggests a role of the IGFaxis in the maintenance of normal glucose homeostasis¹ and inflammation inflammation². In circulation, most IGF-I is bound to specific high-affinity binding . proteins (IGFBP-1 to IGFBP-6) mainly produced in the liver liver³. These proteins not only modulate IGF-I bioactivity but may also have independent metabolic effects⁴. IGFBP-3 is the most abundant of all IGFBPs and binds more than 90–95 percent of the IGF-I in serum. IGFBP-1 is a 28 kD protein and its levels in circulation are tightly regulated by insulin and have a strong inverse correlation with fasting insulin levels⁵; however, its specific role is not completely understood. It is suggested that IGFBP-1 is the only binding protein involved in acute regulation of IGF-I bioavailability⁵ and may play a role to prevent hypoglycemia⁶. In contrast to the increased hepatic production of IGFBP-1 at low insulin levels, there is a dynamic suppression of IGFBP-1 synthesis in presence of peripheral insulin resistance⁷.

Both animal and human data demonstrate that IGF-I gene mutation results in a state of insulin resistance that improves with IGF-I therapy^{8,9}. In addition, among older adults a polymorphism in the promoter region of the IGF-I gene was associated with low IGF-I levels and a 70% elevated risk of type 2 diabetes¹⁰. In a British study among adults aged 45–65 years (n=615)¹¹, a low total IGF-I was associated with increased risk of impaired glucose tolerance (IGT) and diabetes. Further, the authors reported that an inverse association of total IGF-I and subsequent 2-hour glucose concentrations was seen only among people with low IGFBP-1. Because aging is associated with changes in the IGF system, including a decrease in IGF-I and an increase in IGFBP-1 levels^{12–14}, it is uncertain whether similar associations exist among older adults. To evaluate this association in the elderly, we conducted the current study within the Cardiovascular Health Study (CHS), a prospective cohort of men and women aged ≥65 years. In addition, we also evaluated the association between inflammatory markers and IGF-system based on recent epidemiological data indicating anti-inflammatory effects of IGF-I¹⁵.

MATERIAL AND METHODS

The CHS is a population-based, prospective cohort study of risk factors for cardiovascular and cerebrovascular disease in older people¹⁶. In 1989/90, 5,201 community-dwelling elderly adults aged \geq 65 years were recruited from four U.S. communities (Washington County, MD; Allegheny County, PA; Forsyth County, NC; and Sacramento County, CA) based on a randomly generated sampling frame derived from the Health Care Financing Administration.

Participants provided informed consent according to the guidelines created by the institutional review boards at each clinic site. At baseline data on anthropometric measures, demographics, lifestyle factors and medical history were collected. An oral glucose tolerance test (OGTT) with 75-gm glucose was performed at baseline in the original CHS cohort of 5,021 and at year 7 among all participants without known diabetes. In 1992/93, 687 African-American adults aged \geq 65 years were added to the original cohort; however this second cohort was not included in this study due to lack of data on OGTT in this group. CHS participants completed standardized clinical examinations and questionnaires at study baseline and at nine annual follow-up visits¹⁶.

The current study was conducted within a random sample of the original cohort without prevalent cardiovascular disease (CVD) at baseline (n=978) selected as part of a case-cohort study evaluating the association between IGFs and incident CVD. We conducted a cross-sectional analysis among 922 participants after excluding people without OGTT data (n=31) and diabetic individuals treated with insulin (n=25). In addition, a prospective analysis was conducted separately among 301 participants with normal glucose tolerance (NGT; 2-hr post load glucose of <140 mg/dl) and 254 participants with normal fasting glucose levels (<100 mg/dl) at baseline.

Diagnosis of glucose intolerance

Participants were considered to have diabetes if they reported pharmacological treatment for hyperglycemia (insulin or oral agents) at baseline or during follow-up based on annual medical questionnaires. In addition, to diagnose glucose intolerance (which includes IGT, impaired fasting glucose [IFG] and diabetes), we used two criteria; one based on OGTT and the other based on overnight (12–16 hours) fasting glucose¹⁷. According to the World Health Organization based primarily on OGTT¹⁸, diabetes was defined as a 2-hour postload glucose \geq 200 mg/dl or fasting glucose \geq 140 mg/dl, IGT as a 2-hour postload glucose 140–199 mg/dl and fasting glucose <140 mg/dl, and NGT as a 2-hour postload , glucose <140 mg/dl. Based on the American Diabetes Association¹⁹, diabetes was defined as a glucose \geq 126 mg/dl, IFG was defined as glucose between 100–125 mg/dl, and normal fasting (NFG) as a glucose <100 mg/dl.

Laboratory measurements

Details of all laboratory procedures in the CHS have been previously reported²⁰. In this study, total IGF-I, IGFBP-1, and IGFBP-3 were measured using enzyme-linked immunosorbent assay methods (Diagnostics Systems Laboratory, Webster, TX) in fasting blood samples. The withinand between-batch coefficients of variation were 6.9% and 6.0% for IGF-I, 3.5% and 3.1% for IGFBP-1, and 6.0% and 3.6% for IGFBP-3. Plasma glucose was measured with a Kodak Ektachem 700 Analyzer (Eastman Kodak Corp., Rochester, NY) and insulin was measured by a competitive RIA (Diagnostic Products Corp., Malvern, PA).

Statistical Analysis

All statistical analyses were performed with SAS® software (SAS Institute Inc., Cary, NC). Descriptive analysis of the baseline data included calculating means for continuous variables and proportions for categorical variables. To evaluate the correlation between IGFs, anthropometric factors (height, weight, body mass index [BMI], waist circumference), fasting and 2-hour postload glucose and insulin, homeostasis model assessment for insulin resistance (HOMA-IR), and inflammatory factors (C-reactive protein [CRP], fibrinogen, Factor VII, Factor VIII, interleukin-6 [IL-6], albumin, and fibrinogen), we estimated the partial spearman coefficients adjusted for age, race and gender. In all analyses presented, we excluded individuals who were on insulin therapy (n=25); however, in secondary analyses we included these individuals and the results were similar. For all analyses, we modeled the main exposure

variables in quartiles since this method does not make a linearity assumption and is not impacted by outliers. To examine the association between the quartiles of IGFs and glucose intolerance, we used unconditional multivariable logistic regression analysis. We estimated the odds ratio (OR) and the 95% confidence intervals (CI) with the lowest quartile as the reference group. In the multivariable models, we considered following covariates: age (10-year categories), gender, race and smoking. Further, since obesity is a well-established risk factor for diabetes and a strong correlate of IGFBP-1 levels, we added BMI to the models to see its impact on the effect estimates. Further inclusion of waist circumference in the model in addition to BMI did not change the results. We also evaluated the inclusion of CRP in the models as well as effect modification by CRP and BMI. Tests of linear trend across quartiles of IGFs were conducted by assigning median value for each quartile and fitting this continuous variable in the model. All p-values were two-tailed and p-values below 0.05 were considered statistically significant.

RESULTS

Subject characteristics

Compared to participants with NGT (n=470, 33.3 ng/ml), those with abnormal glucose tolerance at baseline had significantly lower IGFBP-1 levels (IGT: n=294; 28.0 ng/ml; p<0.001; diabetes: n=158; 26.8 ng/ml; p<0.001). In addition, compared to individuals with NFG (n=449), IGFBP-1 levels were lower among those with IFG (n=381); 36.4 ng/ml vs. 27.6 ng/ml; p<0.001. Table 1 shows the ORs for prevalent IGT or diabetes in relation to IGF variables and other risk factors at baseline. As expected, abnormal glucose tolerance was significantly associated with higher BMI, waist circumference, fasting insulin, and CRP levels. In addition, prevalent IGT and diabetes were inversely associated with IGFBP-1 levels (IGT: OR for one standard deviation [SD] increase: 0.73, 95% CI: 0.62, 0.86; diabetes: OR for one SD increase: 0.68; 95% CI: 0.55, 0.84).

Correlations with IGFs

IGFBP-1 levels were correlated more strongly with anthropometric factors and measures of glucose tolerance than were IGFBP-3 and IGF-I (Table 2). Adjusted for age, gender, and race, spearman rank correlations between IGFBP-1 and weight, BMI, waist circumference, and HOMA-IR were in the range of r=-0.3 to r=-0.5. IGF-I and IGFBP-3 positively correlated with albumin and negatively correlated with CRP and IL-6, especially among NGT individuals. IGFBP-1 and albumin levels had an inverse correlation among NGT and diabetic individuals. Further, IGFBP-1 correlated inversely with triglycerides and LDL and positively with HDL and these correlations were in the opposite direction for IGFBP-3.

IGFs and glucose intolerance

Table 3 shows the ORs and 95% CI for abnormal glucose tolerance using the OGTT and fasting glucose criteria separately. In a logistic regression model, adjusted for age, gender, race and smoking, the OR for prevalent IGT comparing extreme quartiles of IGFBP-1 was 0.50 (95% CI: 0.32, 0.77; p for trend: 0.001). This association was slightly attenuated when BMI was added to the model (OR: 0.60; 95% CI: 0.37, 0.95; p for trend: 0.03). The results were slightly stronger when we used the fasting glucose criteria; for prevalent IFG, OR between extreme quartiles of IGFBP-1 was 0.41 (95% CI: 0.26, 0.64; p for trend: <0.0001) in the multivariable model that included BMI. The multivariate OR between extreme quartiles for prevalent diabetes was 0.38 (95% CI: 0.22, 0.66; p for trend: 0.0003) which remained marginally significant when BMI was added to the model (OR: 0.60; 95% CI: 0.33, 1.10; p for trend: 0.07). However, with the fasting glucose criteria, this OR for prevalent diabetes was not statistically significant.

Among 301 NGT individuals who had fasting glucose measured at year 7, high IGFBP-1 levels had a borderline significant reduced risk of developing IFG/diabetes. Adjusted for age, gender,

had a borderline significant reduced risk of developing IFG/diabetes. Adjusted for age, gender, race, smoking and BMI, ORs for incident IFG/diabetes were 0.78 (95% CI: 0.37, 1.66) for IGFBP-1 quartile 2, 0.60 (95% CI: 0.26, 1.38) for IGFBP-1 quartile 3, and 0.43 (95% CI: 0.16, 1.17) for IGFBP-1 quartile 4, compared with the first IGFBP-1 quartile (p for trend: 0.08; n = 63 subjects with IFG/diabetes at year 7). In an analysis using the OGTT criteria, there was no significant association between IGFBP-1 levels and the risk of incident IGT/diabetes; the multivariate OR between extreme IGFBP-1 quartiles was 0.67 (95% CI: 0.25, 1.79; p for trend: 0.47; n=254 of which 60 individuals developed IGT/diabetes at year 7).

We found that high IGF-I and IGFBP-3 levels were associated with glucose intolerance in some multivariate models in both cross-sectional and prospective analyses. However, in general, these associations were not monotonically linear or lost significance after controlling for IGFBP-1. On the other hand, associations of IGFBP-1 remained significant even after accounting for IGF-I and IGFBP-3 levels.

Additional analyses

In both cross-sectional and prospective analyses relating IGFBP-1 with glucose intolerance, further adjustment for CRP did not impact our results. In stratified analyses and multivariate models that included interaction terms, we did not find effect modification for the IGFBP-1 associations by IGF-I, IGFBP-3, BMI or CRP. When we modeled the molar ratio of IGF-I: IGFBP-1, a surrogate for IGF-bioavailability, the significant associations for this ratio appeared to be entirely attributable to IGFBP-1.

DISCUSSION

In this study among adults 65 years and older, we found that individuals with glucose intolerance had lower IGFBP-1 levels compared to those with normal glucose tolerance. IGFBP-1 levels also correlated inversely with measures of adiposity and insulin resistance. We did not find any significant association between IGF-I and glucose intolerance in this study and the association for IGFBP-3 was less clear.

As expected, we found a negative correlation between IGFBP-1 and insulin levels. Our finding of an inverse correlation between IGFBP-1 and adiposity is consistent with several previous investigations^{21–24}. Increased adiposity is commonly associated with peripheral hyperinsulinemia which may impact IGFBP-1 levels due to the inhibitory effect of insulin on hepatic synthesis and release of IGFBP-1^{5,25}. Some data suggest that the regulation of IGFBP-1 by insulin may decrease with age¹⁴ and in type 2 diabetes^{21,26,27}. However, we observed a strong inverse correlation of IGFBP-1 with insulin among diabetic members of this elderly cohort.

Aging-induced changes in the growth hormone/IGF-axis have been well described, with IGF-I and IGFBP-3 decreasing and IGFBP-1 increasing with age^{12–14,28}. However, it remains unclear if these changes are associated with risk of age-associated medical conditions. The present data suggest that IGFBP-1 levels, but not total IGF-I levels, are associated with glucose intolerance in the elderly. Previously, Sandhu *et al*¹¹, in a prospective design with 4.5 years of follow-up, reported that high IGF-I levels were associated with a reduced risk of developing IGT or diabetes in people aged 45–65 years. The OR comparing people with IGF-I levels \geq median (19.8 nmol/L) to people with levels less than median was 0.50 (95% CI: 0.26, 0.95). Further, they reported that an inverse association of total IGF-I and subsequent 2-hour postload glucose concentrations was only seen in participants with IGFBP-1 concentrations \leq median (5.5 nmol/L). Other studies among younger populations are also consistent with our findings suggesting an association between low IGFBP-1 and abnormal glucose tolerance. In a

prospective study evaluating risk factors for gestational diabetes (GDM), investigators reported a 57% reduced risk for GDM among women in the highest tertile of IGFBP-1²⁹. The relative risk for developing GDM, comparing women with IGFBP-1 \geq 15.1 nmol/L to those with IGFBP-1< 7.9 nmol/L, was 0.43 (95% CI: 0.18, 1.05; p for trend: 0.059). In another study, family history of type 2 diabetes in adolescents was associated with lower levels of IGFBP-1 (9.5 vs. 3.7 nmol/L; p-value: 0.002), although this was not observed with total IGF-I levels³⁰.

In this study, we did not find any significant association between total IGF-I level and glucose intolerance. Thus, the association of low IGF-I with glucose intolerance previously reported among middle-aged persons¹¹ may not hold among older adults, possibly because this association is masked by other age-related co-morbidities or changes in metabolism that lead to reduced circulating IGF-I levels. Similarly, in a prior report from our cohort, we found that low IGF-I predicted non-fatal myocardial infarction, but not fatal coronary events or ischemic stroke³¹, which was somewhat inconsistent with prior data from middle-aged populations linking low IGF-I with increased risk of incident ischemic heart disease ³² and stroke ³³. One limitation of our investigation is that we did not measure 'free' IGF-I levels, the unbound or readily dissociable fraction of IGF-I, which is strongly correlated with IGFBP-1 levels³⁴. In the previously mentioned study evaluating the association of IGFs and GDM, high levels of free IGF-I were associated with a significantly reduced risk of GDM while total IGF-I levels were not²⁹. Changes in IGFBP-1 levels may impact the bioavailability of free IGF-I and modify its effects³⁵. In our study, high IGFBP-1 levels, which may indicate a reduced IGF-I bioavailability, were associated with lower risk of glucose tolerance. IGF-I has insulin-like metabolic effects and high IGF-I levels have been linked with increased insulin sensitivity and improved glucose tolerance 11,36. Therefore, these data suggest that the association between IGFBP-1 and glucose intolerance may not be explained by insulin-like effects of IGF-I in the elderly. Low IGFBP-1 may also be a marker of increased infiltration of fat in the liver 3^{7} , which is another potential explanation for the observed link with glucose intolerance.

A potential mechanism by which the IGF system may affect glucose tolerance is through its potential interaction with inflammatory mechanisms. We found that low IGF-I and IGFBP-3 levels were associated with systemic markers of inflammation including high CRP and IL-6 and low albumin, although not with glucose tolerance. *In vitro* data suggest that IGFBP-1 synthesis is upregulated by pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF- α), interleukin-(IL)-1 and IL-6 ^{38–41}. In this study, IGFBP-1 was correlated with inflammatory markers (high CRP and low albumin) among the subset of our population with diabetes, but this association was less consistent among non-diabetic individuals. Moreover, the association between IGFBP-1 levels and glucose intolerance was not affected by adjustment or stratification for CRP.

Our study has a few limitations. The prospective analysis was restricted by the small sample size and use of a single follow-up measure of glucose tolerance at year 7. In this study, we also used a single measure of each IGF variable; however, single measurements are prone to random errors which in general bias the results towards the null. Since obesity is a strong risk factor for diabetes, residual confounding by adiposity of the association between IGFBP-1 and glucose intolerance is a potential concern. In our study, when we controlled for adiposity using BMI and waist circumference in the same multivariable models, the results were similar. Due to the observational nature of this study, we are unable to exclude the possibility that IGFBP-1 may just be a marker of the insulin resistance and may not have any direct role in the etiology of glucose intolerance or diabetes.

In summary, the results of this study suggest that low IGFBP-1 levels, but not total IGF-I levels, are associated with glucose intolerance in the elderly. Future research including larger prospective studies is required to confirm these findings.

ACKNOWLEDGMENTS

The research reported in this article was supported by contracts N01-HC-85079 through N01-HC-85086, N01-HC-35129, and N01 HC-15103 from the National Heart, Lung, and Blood Institute and grant (R01HL075516-01) from the National Heart, Lung, and Blood Institute (R.C.K).

Reference

- Clemmons DR. Role of insulin-like growth factor iin maintaining normal glucose homeostasis. Horm Res 2004;62:77–82. [PubMed: 15761237]
- Kaushal K, Heald AH, Siddals KW, Sandhu MS, Dunger DB, Gibson JM, Wareham NJ. The impact of abnormalities in IGF and inflammatory systems on the metabolic syndrome. Diabetes Care 2004;27:2682–2688. [PubMed: 15505005]
- 3. Juul A. Serum levels of insulin-like growth factor I and its binding proteins in health and disease. Growth Horm IGF Res 2003;13:113–170. [PubMed: 12914749]
- 4. Denley A, Cosgrove LJ, Booker GW, Wallace JC, Forbes BE. Molecular interactions of the IGF system. Cytokine Growth Factor Rev 2005;16:421–439. [PubMed: 15936977]
- 5. Lee PD, Giudice LC, Conover CA, Powell DR. Insulin-like growth factor binding protein-1: recent findings and new directions. Proc Soc Exp Biol Med 1997;216:319–357. [PubMed: 9402139]
- Lewitt MS, Denyer GS, Cooney GJ, Baxter RC. Insulin-like growth factor-binding protein-1 modulates blood glucose levels. Endocrinology 1991;129:2254–2256. [PubMed: 1717244]
- Mohamed-Ali V, Pinkney JH, Panahloo A, Cwyfan-Hughes S, Holly JM, Yudkin JS. Insulin-like growth factor binding protein-1 in NIDDM: relationship with the insulin resistance syndrome. Clin Endocrinol (Oxf) 1999;50:221–228. [PubMed: 10396366]
- Yakar S, Liu JL, Fernandez AM, Wu Y, Schally AV, Frystyk J, Chernausek SD, Mejia W, Le Roith D. Liver-specific igf-1 gene deletion leads to muscle insulin insensitivity. Diabetes 2001;50:1110– 1118. [PubMed: 11334415]
- Camacho-Hubner C, Woods KA, Miraki-Moud F, Hindmarsh PC, Clark AJ, Hansson Y, Johnston A, Baxter RC, Savage MO. Effects of recombinant human insulin-like growth factor I (IGF-I) therapy on the growth hormone-IGF system of a patient with a partial IGF-I gene deletion. J Clin Endocrinol Metab 1999;84:1611–1616. [PubMed: 10323388]
- Vaessen N, Heutink P, Janssen JA, Witteman JCM, Testers L, Hofman A, Lamberts SWJ, Oostra BA, Pols HAP, van Duijn CM. A Polymorphism in the Gene for IGF-I: Functional Properties and Risk for Type 2 Diabetes and Myocardial Infarction. Diabetes 2001;50:637–642. [PubMed: 11246885]
- Sandhu MS, Heald AH, Gibson JM, Cruickshank JK, Dunger DB, Wareham NJ. Circulating concentrations of insulin-like growth factor-I and development of glucose intolerance: a prospective observational study. Lancet 2002;359:1740–1745. [PubMed: 12049864]
- Frystyk J. Aging somatotropic axis: mechanisms and implications of insulin-like growth factor-related binding protein adaptation. Endocrinol Metab Clin North Am 2005;34:865–876. [PubMed: 16310627]viii
- Cohen P, Ocrant I, Fielder PJ, Neely EK, Gargosky SE, Deal CI, Ceda GP, Youngman O, Pham H, Lamson G, et al. Insulin-like growth factors (IGFs): implications for aging. Psychoneuroendocrinology 1992;17:335–342. [PubMed: 1279737]
- Rutanen EM, Karkkainen T, Stenman UH, Yki-Jarvinen H. Aging is associated with decreased suppression of insulin-like growth factor binding protein-1 by insulin. J Clin Endocrinol Metab 1993;77:1152–1155. [PubMed: 7521340]
- Eivindson M, Nielsen JN, Gronbaek H, Flyvbjerg A, Hey H. The insulin-like growth factor system and markers of inflammation in adult patients with inflammatory bowel disease. Horm Res 2005;64:9–15. [PubMed: 16088202]

- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2006;29:S43–S48. [PubMed: 16373932]
- National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 1979;28:1039–1057. [PubMed: 510803]
- Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997;20:1183–1197. [PubMed: 9203460]
- 20. Cushman M, Cornell ES, Howard PR, Bovill EG, Tracy RP. Laboratory methods and quality assurance in the Cardiovascular Health Study. Clin Chem 1995;41:264–270. [PubMed: 7874780]
- Frystyk J, Skjaerbaek C, Vestbo E, Fisker S, Orskov H. Circulating levels of free insulin-like growth factors in obese subjects: the impact of type 2 diabetes. Diabetes Metab Res Rev 1999;15:314–322. [PubMed: 10585616]
- Frystyk J, Vestbo E, Skjaerbaek C, Mogensen CE, Orskov H. Free insulin-like growth factors in human obesity. Metabolism 1995;44:37–44. [PubMed: 7476310]
- Wolk K, Larsson SC, Vessby B, Wolk A, Brismar K. Metabolic, anthropometric, and nutritional factors as predictors of circulating insulin-like growth factor binding protein-1 levels in middle-aged and elderly men. J Clin Endocrinol Metab 2004;89:1879–1884. [PubMed: 15070959]
- 24. Ricart W, Fernandez-Real JM. No decrease in free IGF-I with increasing insulin in obesity-related insulin resistance. Obes Res 2001;9:631–636. [PubMed: 11595780]
- Brismar K, Fernqvist-Forbes E, Wahren J, Hall K. Effect of insulin on the hepatic production of insulin-like growth factor-binding protein-1 (IGFBP-1), IGFBP-3, and IGF-I in insulin-dependent diabetes. J Clin Endocrinol Metab 1994;79:872–878. [PubMed: 7521354]
- 26. Gibson JM, Westwood M, Crosby SR, Gordon C, Holly JM, Fraser W, Anderson C, White A, Young RJ. Choice of treatment affects plasma levels of insulin-like growth factor-binding protein-1 in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1995;80:1369–1375. [PubMed: 7536208]
- 27. Lewitt MS, Hall K, Bang P, Brismar K. Altered response of insulin-like growth factor-binding protein 1 to nutritional deprivation in type 2 diabetes mellitus. Metabolism 2005;54:275–280. [PubMed: 15736102]
- Perls TT, Reisman NR, Olshansky SJ. Provision or distribution of growth hormone for "antiaging": clinical and legal issues. Jama 2005;294:2086–2090. [PubMed: 16249424]
- 29. Qiu C, Vadachkoria S, Meryman L, Frederick IO, Williams MA. Maternal plasma concentrations of IGF-1, IGFBP-1, and C-peptide in early pregnancy and subsequent risk of gestational diabetes mellitus. Am J Obstet Gynecol 2005;193:1691–1697. [PubMed: 16260212]
- 30. Arslanian SA, Bacha F, Saad R, Gungor N. Family history of type 2 diabetes is associated with decreased insulin sensitivity and an impaired balance between insulin sensitivity and insulin secretion in white youth. Diabetes Care 2005;28:115–119. [PubMed: 15616243]
- 31. Kaplan RC, McGinn AP, Pollak MN, Kuller LH, Strickler HD, Rohan TE, Cappola AR, Xue X, Psaty BM. Association of total IGF-I, IGFBP-1 and IGFBP-3 levels with incident coronary events and ischemic stroke. J Clin Endocrinol Metab. 2007
- Juul A, Scheike T, Davidsen M, Gyllenborg J, Jorgensen T. Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease: a population-based case-control study. Circulation 2002;106:939–944. [PubMed: 12186797]
- 33. Johnsen SP, Hundborg HH, Sorensen HT, Orskov H, Tjonneland A, Overvad K, Jorgensen JO. Insulin-like growth factor (IGF) I, -II, and IGF binding protein-3 and risk of ischemic stroke. J Clin Endocrinol Metab 2005;90:5937–5941. [PubMed: 16131586]
- Frystyk J. Free insulin-like growth factors -- measurements and relationships to growth hormone secretion and glucose homeostasis. Growth Horm IGF Res 2004;14:337–375. [PubMed: 15336229]
- Katz LE, DeLeon DD, Zhao H, Jawad AF. Free and total insulin-like growth factor (IGF)-I levels decline during fasting: relationships with insulin and IGF-binding protein-1. J Clin Endocrinol Metab 2002;87:2978–2983. [PubMed: 12050283]

- 36. Sesti G, Sciacqua A, Cardellini M, Marini MA, Maio R, Vatrano M, Succurro E, Lauro R, Federici M, Perticone F. Plasma concentration of IGF-I is independently associated with insulin sensitivity in subjects with different degrees of glucose tolerance. Diabetes Care 2005;28:120–125. [PubMed: 15616244]
- Ney DM, Yang H, Smith SM, Unterman TG. High-calorie total parenteral nutrition reduces hepatic insulin-like growth factor-I mRNA and alters serum levels of insulin-like growth factor-binding protein-1, -3, -5, and -6 in the rat. Metabolism 1995;44:152–160. [PubMed: 7532778]
- 38. Fan J, Wojnar MM, Theodorakis M, Lang CH. Regulation of insulin-like growth factor (IGF)-I mRNA and peptide and IGF-binding proteins by interleukin-1. Am J Physiol 1996;270:R621–R629. [PubMed: 8780229]
- Fan J, Char D, Bagby GJ, Gelato MC, Lang CH. Regulation of insulin-like growth factor-I (IGF-I) and IGF-binding proteins by tumor necrosis factor. Am J Physiol 1995;269:R1204–R1212. [PubMed: 7503312]
- 40. Frost RA, Nystrom GJ, Lang CH. Stimulation of insulin-like growth factor binding protein-1 synthesis by interleukin-1beta: requirement of the mitogen-activated protein kinase pathway. Endocrinology 2000;141:3156–3164. [PubMed: 10965886]
- Lang CH, Nystrom GJ, Frost RA. Regulation of IGF binding protein-1 in hep G2 cells by cytokines and reactive oxygen species. The American Journal Of Physiology 1999;276:G719–G727. [PubMed: 10070049]

Table 1

Cross-sectional evaluation of risk factors for impaired glucose tolerance (IGT) and diabetes at baseline.

		IGT (n=294) vs. NGT (n=470)	Diabetes (n=158) vs. NGT (n=470)
Categorical variables	% (n)	OR (95% CI)	OR (95% CI)
Age		. ,	. ,
<70	37.7 (348)	1.0	1.0
70-80	52.0 (479)	1.10 (0.80, 1.50)	1.25 (0.84, 1.86)
80 +	10.3 (95)	0.87 (0.50, 1.51)	1.75 (0.97, 3.16)
Gender			
Male	34.9 (322)	1.0	1.0
Female	65.1 (600)	1.32 (0.97, 1.80)	1.23 (0.84, 1.81)
Race			
White (non-Hispanic)	93.8 (865)	1.0	1.0
Other	6.2 (57)	1.31 (0.71, 2.42)	1.45 (0.71, 2.97)
Smoking Status			
Never	48.7 (449)	1.0	1.0
Former	40.5 (373)	0.81 (0.59, 1.13)	0.84 (0.56, 1.23)
Current	10.9 (100)	0.58 (0.35, 0.98)	0.89 (0.49, 1.62)
Continuous variables	Mean ± SD	OR (95% CI)	OR (95% CI)
Body mass index (kg/m m ²)	26.5 ± 4.7	1.28 (1.10, 1.50)	1.78 (1.47, 2.16)
Waist circumference (cm)	93.1 ± 13.2	1.33 (1.14, 1.55)	1.74 (1.43, 2.12)
Fasting insulin (IU/ml)	14.8 ± 12.3	1.45 (1.10,1.92)	3.89 (2.77, 5.47)
C-reactive protein (mg/L)	4.1 ± 7.2	1.05 (0.87, 1.27)	1.31 (1.10, 1.57)
IGF-I (ng/ml)	152.6 ± 56.3	1.03 (0.89, 1.20)	1.14 (0.95, 1.36)
IGFBP-1 (ng/ml)	32.1 ± 19.7	0.73 (0.62, 0.86)	0.68 (0.55, 0.84)
IGFBP-3 (ng/ml)	$4,129.3 \pm 865.4$	1.13 (0.97, 1.32)	1.19 (0.98, 1.44)

OR, Odds Ratio; CI, Confidence Interval; HOMA-IR, Homeostasis Model Assessment of Insulin Resistance; OGTT, oral glucose tolerance test; NGT, normal glucose tolerance

* All ORs are adjusted for age (in 10 year categories), gender and race/ethnicity. For continuous variables, the ORs are estimated for one standard deviation increase.

_
_
_
<u> </u>
0
-
-
-
-
_
_
_
-
\mathbf{O}
<u> </u>
_
_
-
0
~
_
_
-
5
10
0
~
0
<u> </u>
0
<u> </u>
-

Partial spearman correlations, adjusted for age, gender and race, between IGFs, anthropometric variables, metabolic and inflammatory factors

	IGF-I	Normal (n=470) IGFBP-1	IGFBP-3	Impaired IGF-I	Glucose Toleranc IGFBP-1	ce (n=294) IGFBP-3	IGF-I	Diabetes (n=158) IGFBP-1	IGFBP-3
Anthropometric vorrichlae									
Height	0.04	-0.09	0.07	0.02	-0.17b	-0.03	-0.02	-0.11	0.00
Weight	-0.05	-0.40d	-0.01	0.07	0.54d	0.13^{d}	-0.05	0.39d	0.04
Body mass index	-0.06	0.41d	-0.03	0.05	0.49d	0.16^{b}	-0.04	0.33d	0.04
Waist circumference	-0.08	0.40d	-0.05	0.04	0.47d	0.13^{a}	0.05	0.29^c	0.07
Metabolic factors									
Fasting glucose	0.17^{c}	0.29^d	0.18^{d}	0.09	0.22^{c}	0.09	-0.06	0.07	-0.04
2-hour glucose	0.05	0.21^{d}	0.07	0.03	-0.09	-0.03	-0.02	-0.04	0.07
Fasting insulin	0.03	0.47^d	0.03	0.10	0.49^d	0.05	-0.01	0.43^{d}	-0.08
2-hour insulin	0.11^{a}	0.40^{d}	0.10^{a}	0.03	0.35^d	0.09	0.20^{a}	0.32^{c}	0.15
HOMA-IR	0.06	0.48^{d}	0.06	0.11	0.50^d	0.06	-0.05	0.26^b	-0.09
Inflammatory markers									
C-reactive protein	0.22^d	-0.08	0.16^c	0.13^{d}	-0.10	-0.10	-0.08	0.17^{a}	0.06
Factor VII	-0.01	05	0.11^{d}	0.07	-0.04	0.17^b	0.13	0.01	0.29^{c}
Factor VIII	-0.04	0.08	0.01	0.03	0.03	0.05	-0.09	0.11	-0.11
Interleukin-6	0.16^c	-0.08	0.11^{a}	-0.09	-0.01	-0.08	-0.16	0.01	-0.16
Albumin	0.11^{b}	0.20^d	0.15^{c}	0.05	-0.09	0.06	0.00	0.18^{d}	0.05
Fibrinogen	0.05	-0.05	0.02	0.06	-0.07	0.07	0.18	0.09	0.12
Vascular risk factors		Р	P		7				,
Triglycerides	0.06	0.12^{b}	0.14^{p}	0.02	0.27^{d}	0.20^{c}	-0.02	-0.15	0.16^{d}
LDL	0.08	0.13^{b}	0.13^{b}	0.14^{a}	-0.05	0.23^{d}	0.07	-0.02	0.22^{b}
HDL	-0.09	0.23^d	-0.04	-0.02	0.22^{c}	-0.07	-0.04	0.05	0.00
SBP	0.09^{a}	-0.08	-0.08	-0.10	-0.02	-0.08	0.00	-0.06	0.07
DBP	-0.03	-0.06	-0.01	-0.11	-0.11	-0.07	0.07	-0.15	0.07
Creatinine	0.05	0.09	-0.01	0.05	0.04	0.03	-0.01	0.09	0.06
HOMA-IR, Homeostasis Mod	el Assessment of	Insulin Resistance							
$a_{ m p} \leq 0.05$									

Rajpathak et al.

Growth Horm IGF Res. Author manuscript; available in PMC 2009 April 1.

 $d \atop{p \leq 0.0001}$ ${}^{\mathcal{C}}_{p \leq 0.001}$ $b_{\mathrm{p}} \leq 0.01$

_
/
_
_
_
_
_
~
-
~
<u> </u>
<u> </u>
=
<u> </u>
_
_
$\overline{\mathbf{a}}$
ō
ō
ğ
<u></u>
ōr l
or N
or N
or M
or Ma
or Ma
or Mar
or Man
or Man
or Manu
or Manu
or Manus
or Manus
or Manus
or Manusc
or Manusc
or Manuscr
or Manuscri
or Manuscrip

 Table 3

 Odds ratios (95% confidence intervals) for the prevalence of impaired glucose tolerance, impaired fasting glucose and diabetes at baseline

 by quartiles of IGFBP-1

	QI	Quartiles of Q2	' IGFBP-1 ^a Q3	Q4	p-trend
OGTT criteria IGT (n=94) vs NGT (n=470)					
Number of cases	106	71	61	56	
OR (95% CI) adjusted for age, gender, race, and smoking	1	0.68	0.55	0.50	
OR (95% CI) adjusted for age gender race smoking and BMI	(reference) 1	(0.46,1.01) 0.74	(0.36, 0.83) 0.64	(0.32, 0.77)	0.001
	(reference)	(0.49, 1.12)	(0.41, 0.99)	(0.37, 0.95)	0.03
<u>Diabetes (n=158) vs. NGT (n=470)</u>	22	24	ç	30	
OR (95% CI) adjusted for age, gender, race, and smoking	00 1	4.7 0.78	0.53	0.38	
	(reference)	(0.49, 1.26)	(0.32, 0.89)	(0.22, 0.66)	0.0003
OR (95% CI) adjusted for age, gender, race, smoking and BMI	1	1.02	0.78	0.60	
	(reference)	(0.62, 1.67)	(0.45, 1.35)	(0.33, 1.10)	0.07
Fasting glucose criteria					
Number of cases	151	104	69	57	
OR (95% CI) adjusted for age, gender, race, and smoking	1	0.62	0.35	0.28	<0.001
	(reference)	(0.42, 0.90)	(0.23, 0.52)	(0.19, 0.43)	
OR (95% CI) adjusted for age, gender, race, smoking and BMI] (reference)	0.73	0.47	0.41 (0.26.064)	-0.0001
Diabetes (n=92) vs. NFG (n=449)		(n:+2, T:0/)	(71.0.12.0)	(0.20, 0.04)	
Number of cases	32	24	18	18	
OR (95% CI) adjusted for age, gender, race, and smoking	1	0.69	0.44	0.44	
	(reference)	(0.38, 1.27)	(0.23, 0.84)	(0.22, 0.87)	0.01
OR (95% CI) adjusted for age, gender, race, smoking and BMI	1	1.01	0.89	0.97	
	(reference)	(0.53, 1.94)	(0.43, 1.84)	(0.45, 2.05)	0.88
OGTT, oral glucose tolerance test; IGT, Impaired glucose tolerance; IF4	G, Impaired fasting glucc	se; NFG, Normal fasting glu	cose; NGT, Normal glucose	tolerance; BMI, body mass	index.
a di seconda di second					
"Cutpoints for quartiles of IGFBP-1 are based on 470 normal glucose to	olerant persons; Q1 (>19.	7 ng/ml), Q2 (19.8-30.6 ng/r	ıl), Q3 (30.7-46.8 ng/ml), Q₂	t (>46.8 ng/ml)	

Rajpathak et al.